536 research outputs found

    Making Sense of Social Prescribing

    Get PDF
    This report is a guide to commission, running and evaluating social prescribing schemes

    Proposal for Higgs and Superpartner Searches at the LHCb Experiment

    Full text link
    The spectrum of supersymmetric theories with R-parity violation are much more weakly constrained than that of supersymmetric theories with a stable neutralino. We investigate the signatures of supersymmetry at the LHCb experiment in the region of parameter space where the neutralino decay leaves a displaced vertex. We find sensitivity to squark production up to squark masses of order 1 TeV. We note that if the Higgs decays to neutralinos in this scenario, LHCb should see the lightest Higgs boson before ATLAS and CMS.Comment: 7 pages, 5 figure

    Preliminary results for RR Lyrae stars and Classical Cepheids from the Vista Magellanic Cloud (VMC) Survey

    Get PDF
    The Vista Magellanic Cloud (VMC, PI M.R. Cioni) survey is collecting KSK_S-band time series photometry of the system formed by the two Magellanic Clouds (MC) and the "bridge" that connects them. These data are used to build KSK_S-band light curves of the MC RR Lyrae stars and Classical Cepheids and determine absolute distances and the 3D geometry of the whole system using the KK-band period luminosity (PLKSPLK_S), the period - luminosity - color (PLCPLC) and the Wesenhiet relations applicable to these types of variables. As an example of the survey potential we present results from the VMC observations of two fields centered respectively on the South Ecliptic Pole and the 30 Doradus star forming region of the Large Magellanic Cloud. The VMC KSK_S-band light curves of the RR Lyrae stars in these two regions have very good photometric quality with typical errors for the individual data points in the range of \sim 0.02 to 0.05 mag. The Cepheids have excellent light curves (typical errors of \sim 0.01 mag). The average KSK_S magnitudes derived for both types of variables were used to derive PLKSPLK_S relations that are in general good agreement within the errors with the literature data, and show a smaller scatter than previous studies.Comment: 7 pages, 6 figure. Accepted for publication in Astrophysics and Space Science. Following a presentation at the conference "The Fundamental Cosmic Distance Scale: State of the Art and the Gaia Perspective", Naples, May 201

    Naturalness and Higgs Decays in the MSSM with a Singlet

    Get PDF
    The simplest extension of the supersymmetric standard model - the addition of one singlet superfield - can have a profound impact on the Higgs and its decays. We perform a general operator analysis of this scenario, focusing on the phenomenologically distinct scenarios that can arise, and not restricting the scope to the narrow framework of the NMSSM. We reexamine decays to four b quarks and four tau's, finding that they are still generally viable, but at the edge of LEP limits. We find a broad set of Higgs decay modes, some new, including those with four gluon final states, as well as more general six and eight parton final states. We find the phenomenology of these scenarios is dramatically impacted by operators typically ignored, specifically those arising from D-terms in the hidden sector, and those arising from weak-scale colored fields. In addition to sensitivity of m_Z, there are potential tunings of other aspects of the spectrum. In spite of this, these models can be very natural, with light stops and a Higgs as light as 82 GeV. These scenarios motivate further analyses of LEP data as well as studies of the detection capabilities of future colliders to the new decay channels presented.Comment: 3 figures, 1 appendix; version to appear in JHEP; typos fixed and additional references and acknowledgements adde

    Mortality of babies enrolled in a community-based support programme: CONI PLUS (Care of Next Infant Plus).

    Get PDF
    OBJECTIVE: To report mortality in babies enrolled on a community-based programme, Care of Next Infant Plus (CONI PLUS), which primarily supports parents anxious because of previous sudden unexpected death in infancy (SUDI) in their extended family or following an apparent life threatening event (ALTE) in their baby. DESIGN: Prospective observational study from 1996 to 2010 in the UK. RESULTS: Of 6487 babies enrolled, 37 died (5.7 per 1000). There were 2789 (43.0%) SUDI related babies of whom, six died suddenly and unexpectedly (2.15 per 1000). Four babies were sharing a sofa at night or a bed with parent(s) who smoked or had consumed alcohol. Of the 1882 (29.0%) babies enrolled following an ALTE, five died suddenly and unexpectedly (2.66 per 1000): four unexplained and one due to infection. None occurred while sharing a sleep surface, and at least three died during the day. The remaining 1816 (28%) babies were enrolled for other reasons. Seven died suddenly and unexpectedly (3.85 per 1000), two were unexplained and none associated with bed sharing. CONCLUSIONS: The number of SUDI deaths in babies enrolled on CONI PLUS is higher than expected from UK averages. Deaths in babies enrolled because of family history of SUDI were mostly associated with inappropriate sharing of a sleep surface at night and mostly outside the peak age range for sudden infant death. The opposite is true for those enrolled following an ALTE. The number of deaths is small but findings suggest a different mechanism for death in these two groups

    Microscopic Structure of High-Spin Vibrational Excitations in Superdeformed 190,192,194Hg

    Get PDF
    Microscopic RPA calculations based on the cranked shell model are performed to investigate the quadrupole and octupole correlations for excited superdeformed bands in 190Hg, 192Hg, and 194Hg. The K=2 octupole vibrations are predicted to be the lowest excitation modes at zero rotational frequency. At finite frequency, however, the interplay between rotation and vibrations produces different effects depending on neutron number: The lowest octupole phonon is rotationally aligned in 190Hg, is crossed by the aligned two-quasiparticle bands in 192Hg, and retains the K=2 octupole vibrational character up to the highest frequency in 194Hg. The gamma vibrations are predicted to be higher in energy and less collective than the octupole vibrations. From a comparison with the experimental dynamic moments of inertia, a new interpretation of the observed excited bands invoking the K=2 octupole vibrations is proposed, which suggests those octupole vibrations may be prevalent in SD Hg nuclei.Comment: 22 pages, REVTeX, 12 postscript figures are available on reques

    A mathematical framework for critical transitions: normal forms, variance and applications

    Full text link
    Critical transitions occur in a wide variety of applications including mathematical biology, climate change, human physiology and economics. Therefore it is highly desirable to find early-warning signs. We show that it is possible to classify critical transitions by using bifurcation theory and normal forms in the singular limit. Based on this elementary classification, we analyze stochastic fluctuations and calculate scaling laws of the variance of stochastic sample paths near critical transitions for fast subsystem bifurcations up to codimension two. The theory is applied to several models: the Stommel-Cessi box model for the thermohaline circulation from geoscience, an epidemic-spreading model on an adaptive network, an activator-inhibitor switch from systems biology, a predator-prey system from ecology and to the Euler buckling problem from classical mechanics. For the Stommel-Cessi model we compare different detrending techniques to calculate early-warning signs. In the epidemics model we show that link densities could be better variables for prediction than population densities. The activator-inhibitor switch demonstrates effects in three time-scale systems and points out that excitable cells and molecular units have information for subthreshold prediction. In the predator-prey model explosive population growth near a codimension two bifurcation is investigated and we show that early-warnings from normal forms can be misleading in this context. In the biomechanical model we demonstrate that early-warning signs for buckling depend crucially on the control strategy near the instability which illustrates the effect of multiplicative noise.Comment: minor corrections to previous versio

    Anthropogenic Space Weather

    Full text link
    Anthropogenic effects on the space environment started in the late 19th century and reached their peak in the 1960s when high-altitude nuclear explosions were carried out by the USA and the Soviet Union. These explosions created artificial radiation belts near Earth that resulted in major damages to several satellites. Another, unexpected impact of the high-altitude nuclear tests was the electromagnetic pulse (EMP) that can have devastating effects over a large geographic area (as large as the continental United States). Other anthropogenic impacts on the space environment include chemical release ex- periments, high-frequency wave heating of the ionosphere and the interaction of VLF waves with the radiation belts. This paper reviews the fundamental physical process behind these phenomena and discusses the observations of their impacts.Comment: 71 pages, 35 figure
    corecore