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FIG. 4 
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FIG. 6 
Welding Parameters 

Parameter Setting 
Inertial mass 1.52 ibf -3" 
Rotational speed 
Surface velocity' 
Axial force 
Weld pressuref 
Weld energyt 
Prebond gap 
Dwell time 
Average upset 
* For 0.5 inch diameter bar 
7 Ram area = 4.9 in2 

4500 rpm 
559 s f p m  

7 100 Ibf 
1092 pi 
5241 f t -1bf 

0,100 in 
3 sec 

0.150 in - 

$ Energy = ( w e  rpm2)/5873 
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FIG. 7 

Variables that were modified during the development of the pattern recognition system 

Module Possible Possible Values 
- ---- 

I 

Process Description microphones 1 6i 3 

-- 
Feature Analysis window position 0 -- 120,000 

- -- 
1024 

Feature Analysis FFT size 
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FIG. 8 

- Bend test results. 
Weld Number Surface Condition Bond Quality ~ o n d c d  Area 

Before Welding (% -- 
~reshly  Machined 
Freshly Machined 
Freshly Machined 
Freshly Machined 
Freshly Machined 
Freshly Machined 
Freshly Machined 

Not Machined 

Acceptdble 
Conditional 
Conditional 
Conditional 
Conditional 
Conditional 
Conditional 

Unacceptable -- 
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FIG. IOA 
Speed 
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FIG. 1OB 
Typical Acoustical Signature 
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FIG. 10D 
AcceptablelCanditional ( I  024-Paint FFT) 
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FIG. 10E 
AcceptablelConditionalNnacreptable (4096-Polnt FFT) 
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FIG. 11A 

FIG. 11B 

FIG. 11C 
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1 
METHOD AND APPARATUS FOR 

IN-PROCESS SENSING OF 
MANUFACTURING QUALITY 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application claims the priority of the co-pending U.S. 
Provisional Patent Application No. 601373,174, entitled 
"Method and Apparatus for In-Process Sensing of Manu- 
facturing Quality," filed Apr. 17, 2002. The entire disclosure 
and contents of the above application is hereby incorporated 
by reference. 

GOVERNMENT INTEREST STATEMENT 

The United States Government has rights in this invention 
pursuant to Contract No. W-7405-ENG-36 between the 
United States Department of Energy and the University of 
California for the management and operation of the Los 
Alamos National Laboratory. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
The present invention relates to methods for sensing the 

quality of a weld joint. 
2. Description of the Prior Art 
Traditionally, critical inertia-friction welded joints tend to 

be difficult to inspect for two reasons: (1) non-destructive 
evaluation techniques only detect gross disbonds leaving 
more subtle discontinuities which could have a significant 
effect on fatigue life or joint fracture toughness; and (2) 
destructive post-process inspection is time-consuming and 
costly for highly man-rated or labor intensive applications. 

Although improvements in post-process, nondestructive 
tests have been realized in research and development labo- 
ratory environments, such as described in Armstrong, B., 
Ultrasonic Analysis of Inertia Friction Welds Between Simi- 
lar and Dissimilar Alloys, M.S. thesis, The Ohio State 
University, Department of Welding Engineering (1986), the 
entire contents of which are hereby incorporated by 
reference, no reliable method is available for detecting 
in-situ weld quality in a production environment. For com- 
mercial applications, weld parameter development and post- 
process inspection efforts can result in up to a 200%-time 
(and cost) overhead in the overall manufacturing process 
with little value added. Therefore, there exists a need for a 
commercially feasible apparatus and method using an 
in-process means of determining part quality of a weld joint 
to reduce costs and increase quality. 

SUMMARY OF THE INVENTION 

It is therefore an object of the present invention to provide 
a method and apparatus that will provide a nondestructive 
inspection means of a weld joint formed by a friction weld 
process. 

It is a further object to provide an apparatus having 
noncontact acoustical sensors for sampling an acoustical 
signature. 

It is yet another object to provide a method and apparatus 
for identifying features in an acoustical signature from a 
weld joint that correlates to weld quality. 

It is yet another object to provide a method and apparatus 
for correlating features in an acoustical signature from a 
weld joint to categories of weld quality using a neural 
network. 

It is yet another object to provide a method and apparatus 
for distinguishing between types of categories of weld 
quality such as acceptable, conditional and unacceptable. 

It is yet another object to provide a method for training a 
5 neural network so that a trained neural network may deter- 

mine the quality of weld joint, using both destructively 
observed weld joints or test weld joints and non- 
destructively observed weld joints or examined weld joints. 

It is yet another object to provide a method and apparatus 
for reducing the cost and time involved in post friction weld 
process inspection of a weld joint. 

It is yet another object- to provide a method and apparatus 
for performing the nondestructive inspection of a weld joint 
in real time. 

15 
Finally, it is an object of the invention to provide a method 

and apparatus for determining the quality of a weld joint 
based on the result of a neural network. 

According to a first broad aspect of the present invention, 
20 there is provided a method for determining the quality of an 

examined weld joint comprising the steps of (a) providing 
acoustical data from the examined weld joint, and (b) 
performing neural network operations on the acoustical data 
to determine the quality of the examined weld joint, wherein 

25 the examined weld joint is produced by a friction weld 
process. 

According to second broad aspect of the invention, there 
is provided a method for training a neural network compris- 
ing the steps of (a) inputting acoustical data from at least one 

30 test weld joint, (b) inputting observable data from at least 
one test weld joint, and (c) training the neural network based 
on acoustical data and observable data from at least one test 
weld joint to form a trained neural network so that the 
trained neural network is capable of determining the quality 

35 of a examined weld joint based on acoustical data from the 
examined weld joint. 

According to third broad aspect of the invention, there is 
provided an apparatus comprising a housing, at least one 
acoustical sensor mounted in the housing, and housing 

40 mounting means for mounting the housing on a friction weld 
apparatus so that that at least one acoustical sensor can 
sample an acoustical signature from a weld joint. 

Other objects and features of the present invention will be 
apparent from the following detailed description of the 

45 preferred embodiment. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The invention will be described in conjunction with the 
accompanying drawings, in which: 

FIG. 1 is a photograph having a perspective view of a 
housing with mounted sensors mounted on a friction weld 
device constructed in accordance with a preferred embodi- 
ment of the invention; 

55 
FIG. 2Ais a photograph having a left perspective view of 

a housing mounted on a friction weld device constructed in 
accordance with a preferred embodiment of the invention; 

FIG. 2B is a photograph having a right perspective view 
of a housing mounted on a friction weld device constructed 

60 in accordance with a preferred embodiment of the invention; 
FIG. 2C is a photograph having a side view of a housing 

mounted on a friction weld device constructed in accordance 
with a preferred embodiment of the invention; 

FIG. 3A is a photograph having a side view of a housing 
65 mounted on a friction weld device with the ram pulled back 

constructed in accordance with a preferred embodiment of 
the invention; 
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FIG. 3B is a photograph having a side view of a housing FIG. 11D is a schematic representation of stage four of a 
mounted on a friction weld device with the ram pushed friction weld process in accordance with a preferred embodi- 
forward constructed in accordance with a preferred embodi- ment of the present invention; and 
ment of the invention; FIG. 12 is a perceptive view of a friction stir weld process 

FIG. 3C is a photograph having a perceptive view of the 5 in accordance with a preferred embodiment of the present 
ram of a friction weld device constructed in accordance with invention. 
a preferred embodiment of the invention; 

FIG. 4 is a diagram of a pattern classification system DETAILED DESCRIPTION OF THE 
constructed in accordance with a preferred embodiment of PREFERRED EMBODIMENT 
the invention; 10 It is advantageous to define several terms before describ- 

is a probabilistic (PNN) architec- ing the invention. It should be appreciated that the following 
ture for a two-category decision network constructed in definitions are used throughout this application, 
accordance with a preferred embodiment of the invention; 

FIG. 6 is a table that shows weld parameters used in DEFINITIONS 
example one of the invention; 15 

Where the definition of terms departs from the commonly 
FIG. 7 is a table that shows variables that were modified Used meaning of the term, Applicants intend to utilize the 

during the pattern system in definitions provided below, unless specifically indicated, 
example one of the invention; 

For the purposes of the present invention, the term "qual- 
FIG. 8 is a table that shows bend test results in example 

20 ity" refers to the characteristics of a weld joint, such as 
one of the invention; 

exhibiting high or good tensile strength and weld ductility, 
9A is a picture showing a perspective view of a that are indicative of the weldability of the materials, For 

copper-stainless steel weld joint having an acceptable result example, a quality weld joint may exhibit a strong welded 
used in example one of the invention; connection between the materials. Quality may be visually 

9B is a picture a perspective view of a 25 determined by the percentage of the surface area of the 
copper-stainless steel weld joint having a conditional result interfaces of the two materials that exhibit bonding as a 
used in example one of the invention; result of a friction weld process. Quality may be important 

FIG. 9C is a picture showing a perspective view a in determining the durability of a weld joint, which may 
co~~er-stainless steel weld joint having an unacceptable experience various levels of stress when the weld joint is 
result used in example one of the invention; 30 applied in various applications. 

FIG. 9D is a picture showing a top view of FIG. 9Ahaving For the purposes of the present invention, the term 
a fracture surface for an acceptable bond quantity in joint" refers to the point of contact or interface between two 
example one of the invention; materials that are welded using a friction welding process. 

FIG. 9E is a picture showing a top view of FIG. 9B having ~ h ,  weld joint may be formed when both work-piece 
a fracture surface for a conditional bond quantity in example 35 materials' interfaces are consolidated under pressure pro- 
one of the invention; duced by a friction weld. Examples of weld joints are shown 

FIG. 9F is a picture showing a top view of FIG. 9C having in FIGS. 9A-9C. For the purposes of the present invention, 
a fracture surface for an unacceptable bond quantity in the term weld joint may refer to an examined weld joint or 
example one of the invention; a tested weld joint. 

FIG. 10Ais a speed versus time chart for the friction weld 40 F,, the purposes ofthe present invention, the term 
process showing the rotational speed of one work piece in ined jointn refers to a that will be examined to 
example one of the invention; determine weld quality, without destructively testing the 

FIG. 10B is a voltage versus time chart for the acoustical weld joint to determine the weld quality. The acoustical data 
signature sampled by an acoustical sensor in example one of from an examined weld joint may be used to further train a 
the invention; 45 

neural network. 
FIG. 10C is an accuracy versus time chart for the classi- F~~ the purposes of the present invention, the term "tested 

fication system using acce~tablelunacce~table quality cat- weld joint" refers to a weld joint that is destructively tested 
W r i e s  produced by a trained neural network in example to determine by observing the weld quality of a weld joint. 
one of the invention; The observed and acoustical data from a tested weld joint 

FIG. 10D is an accuracy versus time chart for the clas- may be used in the method of the present invention to train 
sification system using acceptablelconditional quality cat- a neural network. 
egories produced by a trained neural network in example For the purposes of the present invention, the term 
one of the invention; "destructively tested" refers to any method where the weld 

FIG. 10E is an accuracy versus time chart for the classi- 55 joint breaks apart to allow one to observe the bond between 
fication system using acceptablelconditionallunacceptable the work piece materials. Destructively tested may be per- 
quality categories produced by a trained neural network in formed by a machine or human. 
example one of the invention; For the purposes of the present invention, a value, data, 

FIG. 11A is a schematic representation of stage one of a signal, or other factor is "dependentn or ''based" on a 
friction weld Process in accordance with a preferred embodi- 60 particular value, property, the satisfaction of a condition, or 
ment of the present invention; other factor, if that value, data, signal, or other factor is 

FIG. 11B is a schematic representation of stage two of a derived by performing a mathematical calculation or logical 
friction weld process in accordance with a preferred embodi- decision using that value, data, signal, or other factor. For 
ment of the present invention; example, a processed signal may be based on a signal that 

FIG. 11C is a schematic representation of stage three of a 65 has been processed by being filtered, transformed and nor- 
friction weld process in accordance with a preferred embodi- malized using various mathematical operations or formulas. 
ment of the present invention; Also, an output may be based on a signal that has been 
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processed using frequency information from an acoustical referred to as the acoustical emission (AE). The acoustical 
signature using a discrete Fourier transform and using phase signature may include acoustical energy, sound pressure, 
information derived from the time-domain relationship from amplitude, mechanical properties and phenomenon, thermal 
each microphone in a sensor. properties and phenomenon, metallurgical properties and 

For the purposes of the present invention, the term 5 phenomenon, etc. the signature may 
contain frequency information and phase information when "acoustical data" refers to raw data in acoustical signature 
multiple acoustical sensors are used. Preferably, an acous- 

that may be preprocessed, extracted, etc. The data tical signature is sampled using sensors and 
may be used as a hut for the after the raw processed to obtain acoustical data suitable for inclusion into 
data has been preprocessed. data may be lo training the nenral network for determining the quality of an 
represented by at least one signal. For example, while examined weld joint, 
measuring the acoustical signature or emission from a 

For the purposes of the present invention, the term "fric- friction weld joint, the acoustical sensors may be able to 
tion welding" or "friction weld process" refers to any 

determine a raw data point such as amplitude. Before 
conventional friction welding of two materials wherein heat 

including the raw data or amplitude in the neural network, is generated at the interface of the two materials and pressure 
the raw data must be preprocessed, or extracted to form 

is used to consolidate the two materials together. A friction 
acoustical data, such as, in this case, frequency. Preferably, 

weld process may involve welding two dissimilar metals acoustical data is included into a neural network when 
together, such as ferrous and non-ferrous metals. A typical 

training or testing the neural network. 
friction weld process may involve the following stages, as 

the purposes the present the term shown in FIGS. 11A-11D. In the first stage, one of the two 
"observed data" refers to data that is observed through visual 20 work-piece materials is rotated at a predetermined speed, 
inspection. The observation of observed data may be made while the other work-piece material is held stationary. In the 
with the assistance of a microscope, to determine the bonded second stage, the two work-pieces are brought together 
areas produced a joint. Observed data may be under compression and an axial force is applied. The dura- 
obtained from the destructive testing of a test weld joint. The tion of the rotation is a function of the nature of the materials 
observed data may be used to train a neural network so that " and size, the third stage, the compress~ve and frictional 
a trained have use data forces produce heat causing the displacement of material, 
determine the quality of a joint from an examined referred to as flash, at the faying surfaces. In the fourth stage, 
joint.   or example, FIGS. 9D-9F show fractured weld joints rotation stops and axial force is maintained for a predeter- 
that have observable data that can be inputted into a neural 30 mined amount of time to complete the weld, should be 
network. appreciated that other friction weld processes may be used. 

For the purposes of the present invention, the term "neural Friction welding process includes direct or continuous fric- 
network" refers to a structure of the information processing tion welding, hybrid friction welding, solid-state welding, 
system having several interconnected layers, which simu- inertia friction welding, friction stir welding as shown in 
lates a biological neuron pattern. A neural network may be 35 FIG. 12, friction hydropillar processing, and friction surfac- 
composed of a large number of highly interconnected pro- ing etc. Friction welding processes do not include methods 
cessing elements that are analogous to neurons and may be that utilize arc welding techniques that uses the heat gener- 
tied together with weighted connections that are analogous ated by the tip of an electrode and filler metal to produce a 
to synapses. A neural network may refer to an artificial weld joint. 
neural network (ANN) or probabilistic neural network 40 For the purposes of the present invention, the term 
(PNN). The development of PNN is described in S~echt ,  D.2 "acceptable" refers to classification category for welds that 
"Probabilistic Neural Networks for Classification, Mapping have a majority or all of the interfacing sur- 
or Associative Memory," in Proceedings of the ZEEE Inter- faces bonded, For example, FIG, 9D that shows an unac- 
national Conference on Neural Networks, 1988, vol. 1, PP. ceptable weld. An acceptable result may be indicated by a 
525-5323 and S p e c k  D.2 Neural Networks, 3, 109-118 45 light, LED, sound, sequence of events, pulse, visual 
(1990), the entire contents and disclosure of which are indication, graphically, numerically, etc. when a trained 
hereby incorporated by reference. Preferably, a neural net- neural network based on acoustical data from an examined 
work operates by training, wherein the training adjusts to the weld joint shows that the weld is acceptable. Preferably, the 
exposure known true values for an inputloutput. A neural acceptable indicator has a different orientation than the other 
network may be well suited to handling data sets where the categories of conditional or unacceptable, 
structure is ill-defined and which contains both deterministic F,, the purposes of the present invention, the term "con- 
and random A network may refer a ditional" refers to classification category for welds that have 
supervised neural network or an unsupervised neural net- most or some of the interfacing surfaces bonded, F~~ 
work. example, FIG. 9E that shows an unacceptable weld. A 

For the purposes of the present invention, the term "per- 5s conditional result may be indicated by a quality determining 
forming neural network operations," refers to an operation apparatus having a light, LED, sound, sequence of events, 
on data performed by a neural network. For example, pulse, visual indication, graphically, numerically, etc. when 
performing a neural network operation may require input- a trained neural network based on acoustical data from an 
ting or providing data to the neural network and performing examined weld joint shows that the weld is conditional. 
a series of operations of the neural network to produce an 60 Preferably, the conditional indicator has a different orienta- 
output. The type of neural networkused to analyze data may tion than the other categories of acceptable or unacceptable. 
define the operations performed by a neural network. For the purposes of the present invention, the term "unac- 

For the purposes of the present invention, the term ceptable" refers to classification category for welds that have 
"acoustical signature" refers to the raw data that is gathered no or little bonding at the surface. For example, FIG. 9F that 
from a weld joint during or after the stages of a friction weld 65 shows an unacceptable weld. An unacceptable result may be 
process. The acoustical signature may be represented by at indicated by a quality determining apparatus having a light, 
least one signal. The acoustical signature may also be LED, sound, sequence of events, pulse, visual indication, 
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graphically, numerically, etc. when a trained neural network Effects of Welding Parameters on Weld Strength and AE," in 
based on acoustical data from an examined weld joint shows Proceedings of the Sixth International Offshore and Polar 
that the weld is unacceptable. Preferably, the conditional Engineering Conference, The International Society of Off- 
indicator has a different orientation than the other categories shore and Polar Engineers, Los&Fles, Calif., USA, 1996, 
of acceptable or conditional. 5 vol. 4, pp. 177-184, the entire contents are hereby incorpo- 

For the purposes of the present invention, the term "com- rated by reference, correlated weld strength to IFRW weld- 
ing parameters, such as rotational speed, pressure, and 

putern refers to any type of apparatus having a means for inertia, and total cumulative AE counts, The final report of 
and processing data. persona' this research that correlates Zone-A AE counts and weld 

mainframe mini-cOm~uter, 
Or an lo strength is described in Oh, S,, park, H,, and Lee, B,, 

intranet or a worldwide network of computers, such as a "Development of Real-Time Quality Evaluation of Friction 
in a business, etc. a Welding by Acoustic Emission: 3rd Report, Effects of Initial 

computer may perform the calculations necessary for the AE Counts During Plastic Deformation in FRW,n in Pro- 
neural network to be trained. ceedings of the Seventh International Offshore and Polar 

For the Purposes of the Present invention, the term ‘‘quai- Engineering Conference, The International Society of Off- 
ity determining apparatus" refers to any device, such as a shore and Polar Engineers, Honolulu, Hi., USA, 1997, vol. 
computer, that informs a user of the quality of a weld joint. 4, pp. 535-540, the entire contents and disclosure of which 

is hereby incorporated by reference. 
DESCRIPTION The current industry approach to ensuring quality in 

Previous research into in-process quality detection of 20 IFRW relies upon maintaining absolute upset within a 
friction welds is described in Wang, K., Reif, G., and Oh, S., predetermined 23 0 envelope and applies this quality metric 
"In-Process Quality Detection of Friction Welds Using post-P~OC~SS. Previous work as described by Hartman, D., 
Acoustic Emission Techniques," Welding Journal, 61, Cola, M., and Dave, V., "Eliminating Post-Process Inspec- 
312s-316s (September 1982), the entire contents are hereby tion of Inertia Friction Welds Through In-Process, ~ u a 1 i t ~ -  
incorporated by reference. This research demonstrated the 25 Based Monitoring," in 82nd hmual  AWS Convention, 
feasibility of using acoustical emission (AE) as an Abstracts of Papers, Cleveland, Ohio, 2001, PP. 190-192, 
in-process quality metric for inertia friction welding (IFRW) the entire contents and disclosure is hereby incorporated by 
of ferrous metals, This research was able to correlate AE reference demonstrated that this technique is capable of 
counts to joint strength for bar-to-bar (AISI 4140 to 1117 and detecting faulty welds when machine Parameters varied 
12L14) and tube-to-tube (AISI 1020 to 304SS) welds. AE 30 slightly from their nominal. However, other defect 
sensing was accomplished with a piezoelectric transducer conditions, such as, surface contamination and 
attached directly to either the stationary chuck or the work misalignment, were not detectable by monitoring absolute 
piece. For mild steels, this research found two distinctive upset. 
regions of AE: one during the welding process (A-zone) and Other methods may use acoustical sensors to determine 
the other during the cool-down portion of the weld cycle 35 the quality of a weld joint, but these methods are not suited 
(B-zone). The first burst of AE activity is due primarily to for a friction weld process. Previous methods are described 
the plastic deformation of the material during the weld, in U.S. Pat. No. 6,018,729 to Zacharia, et al., and U.S. Pat. 
whereas the second burst of AE activity is suspected to be a No. 5,448,503 to Morris, et al., the entire contents of which 
result of martensitic transformation. This research showed are hereby incorporated by reference. Such methods may 
relatively good correlation between the cumulative B-zone 40 train neural networks based on the data from acoustical 
AE counts and the tensile breaking force, i.e., strength, for sensors but only apply arc-welding techniques. These meth- 
ferrous metals. However, non-ferrous metal experiments, ods cannot be applied to a non-contact or nondestructive 
such as aluminum and copper, resulted in no detectable inspection of a weld joint produced by a friction weld 
B-zone AE activities, and hence this research was unable to process. 
determine weld strength. 45 The present invention overcomes the shortcomings of the 

An extended analysis on the previous research is prior research and art by using a novel, noncontact, nonde- 
described in Oh, S., A,, H., Kunio, T., and Wang, K., structive acoustical sensing technique and method using an 
Transactiom of the Japan Welding Society, 13, 15-26 apparatus for acoustical sensing. The present invention may 
(1982), and Oh, S., Oh, J., Jean, T., and Oh, S., ''Develop- be used to sense the acoustical signature of a weld joint 
merit of Real-Time Quality Evaluation of Friction Welding so during welding or after the friction welding process is 
by Acoustic Emission: Report 1," inproceedings of the Fifih complete. Preferably, the present invention may be used to 
International Offshore and Polar Engineering Conference, determine or sense the quality of a weld joint in real time 
The International Society of Offshore and Polar Engineers, during a friction welding process. In particular, the acous- 
The Hague, The Netherlands, 1995, vol. 4, pp. 163-168, the tical data sampled from the acoustical sensors may be 
entire contents of these documents are hereby incorporated ss analyzed using a neural network pattern classification sys- 
by reference. This research used the total cumulative AE tem in order to determine that information, such as fre- 
counts, i.e., A-zone counts+B-zone counts, as an in-process quency or phase information, exists within the acoustical 
quality metric. In particular, this research was able to data that may be correlated to weld characteristics, such as 
correlate weld strength with (1) total cumulative AE counts bond quality. Further, the present invention provides a 
and initial energy, (2) total cumulative AE counts and total 60 method determining the weld quality of weld joint once a 
upset, and (3) total cumulative AE counts and welding time, neural network is trained, so that acoustical data may be 
for continuous drive friction welding. This research was able correlated to a quality metric, such as, acceptable, 
to empirically derive an equation for tensile strength that can unacceptable, or conditional. 
be used for in-process monitoring and control of friction In one preferred embodiment of the present invention, 
weld strength. Other research as described in Oh, S., Oh, J., 65 there is provided a method for determining the quality of an 
and Chang, H., "Development of Real-Time Quality Evalu- examined weld joint comprising the following steps of 
ation of Friction Welding by Acoustic Emission: 2nd Report. providing or inputting acoustical data from the examined 
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weld joint, and performing neural network operations on the evolve throughout the manufacturing process by incorpo- 
acoustical data to determine the quality of the examined rating new training instances and adapting, or refining, its 
weld joint, wherein the examined weld joint is produced by classification strategies appropriately. 
a friction weld process. Preferably, the method of the first Alternatively, a neural network may be trained using an 
embodiment is performed in real-time while the examined 5 adjusted set of tested weld joints and possibly using a first 
weld joint is formed from the friction weld process. examined weld joint to determine the quality of a second 
Alternatively, the method of the first embodiment may be examined weld joint. This alternative may allow a neural 
performed during all stages of the friction weld process, and network to become adaptive to set of quality conditions that 
acoustical data from all stages may be used as inputs to a may fluctuate over time depending on the user's require- 
Pattern classification system to determine weld quality lo ments for the quality standard of a weld joint. The method 
in-situ. of training a neural network based on an adaptation may 

The present invention may classify types of welds based involve first training the neural network on a fixed set of test 
on the quality of the weld joint. A preferred type of classi- weld joints as described by the previous paragraph. 
fication may include defining an acceptable weld and unac- Preferably, training a neural network on a fixed set of test 
ceptable weld. An acceptable weld may be a weld joint in weld joints is advantageous for establishing primitive qual- 
which the majority of the interfacing surfaces are bonded. ity parameters. However, a neural network may be trained 
An unacceptable weld may be a weld joint in which no or entirely on the adaptation method using solely examined 
little bonding at the surfaces exists. In addition, a third weld joints. When the neural network is first trained on a 
classification may include defining conditional weld in fixed set of tested weld joints, the method further comprises 
which the weld joint is between the acceptable and unac- 20 inputting acoustical data from a first examined weld joint, 
ceptable classification. The classifications may be combined and training the neural network based on the acoustical data 
in a number of ways, such as acceptablelunacceptable, to form a trained neural network so that the trained neural 
acceptablelconditional, conditionallunacceptable, andlor network is capable of determining the quality of a second 
acceptablelconditionallunacceptable. examined weld joint based on acoustical data from the 

The classifications may also involve a first classification 2s second examined weld joint. 
of acceptablelunacceptable and a second classification of As described above, the neural network may receive 
acceptablelconditional or vice versa. This arrangement of inputs of acoustical data and observation data when analyz- 
determining quality of weld joint by using to sets having one ing the quality of a weld joint. The acoustical data may be 
common category allows a classification of a weld joint sampled from the acoustical emissions or acoustical signa- 
based on all three categories of acceptablelconditionall 30 ture of a weld joint. Preferably, an acoustical sensor may be 
unacceptable. This arrangement is more preferable because used to sample the acoustical signature. More preferably, an 
the neural network produces a binary output suitable to a acoustical sensor comprised of a housing, at least one 
two-step classification process. acoustical sensor mounted in the housing, and a means for 

Preferably a neural network, such as an PNN, may be used mounting the housing on the friction weld device may be 
to analyze the acoustical data and observed data sampled 35 used to sample the acoustical signature. The acoustical 
from a tested weld joint to train the neural network so that sensor may be microphone. Preferably, four microphones 
the neural network may determine the quality of a weld joint may be used as acoustical sensors to sample the acoustical 
based on acoustical data from an examined weld joint. The signature. Alternative, the acoustical sensor may comprise a 
process of a neural network is described in more detail in plurality of microphones from one to twelve. The acoustical 
following paragraphs and elsewhere through the specifica- 40 sensor may sample the acoustical signature at 40 kHz. 
tion. Preferably, the acoustical sensors are mounted at an equal 

A neural network may be trained using a fix set of tested distance from the weld joint. The housing may be in any 
weld joints and the parameters of a quality weld joint is set shape, such as a circle, rectangle, octagon, ellipse, 
for future use of examined weld joints. The method training horseshoe, etc. The housing and means for mounting the 
a neural network based on a fixed set of tested weld joints 45 housing may be made of any material, such as a metal or 
comprises the following steps of inputting acoustical data metal alloy, plastic, composite material, etc. 
from at least one test weld joint, inputting observable data The acoustical data may be based on raw data from the 
from the same at least one test weld joint, and training the acoustical signature. The raw data may comprise time 
neural network based on acoustical observable data to form domain data andlor frequency information, such as the 
a trained neural network so that the trained neural network so amplitude of the acoustical signature. The acoustical data 
is capable of determining the quality of an examined weld may be based on frequency information. Preferably, prior to 
joint based on acoustical data from the examined weld joint. basing the acoustical data on the frequency information, a 
The neural network may use as many test weld joints as moving window discrete Fourier transform (DFT) was pre- 
necessary to meet the parameters for quality. Preferably, the formed on the raw data from the acoustical signature using 
neural network may use 5-50,000 test weld joints. More ss the fast Fourier transform (FFT) algorithm. 
preferably, the neural network may use 10-1,000 test weld When at least two microphones are used to sample the 
joints. Most preferably, the neural network may use 2&100 acoustical signature, raw data may also include phase infor- 
test weld joints. In commercial applications, the fewer mation. The acoustical data may be based on frequency 
number of weld joints may be sufficient to train a neural information and phase information. Preferably, phase infor- 
network. However, in large commercial applications may 60 mation is based on a time-domain relationship between the 
require a high number of test weld joints when a particular at least two microphones. When sampling the acoustical 
level of quality is necessary to ensure the weld joint per- signature for 3 seconds at 40 kHz, using four microphones, 
forms under its operating conditions. Additional, more test 160,000 data points would be obtained. Other numbers of 
weld joints may be included to further train a neural network data points are possible using different combinations of 
that has already been trained by a previous set of test weld 65 microphones and time intervals. A step size of 250 data 
joints. Once a model has been developed or trained, the points may be used to reduce the time and complexity in 
neural network or other pattern classification technique may calculating the acoustical data. Other step sizes of 100-1000 
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are possible and may be used when analyzing the raw data 
from an acoustical signature. 

Each segment of the time-domain from the raw data of the 
acoustical signature may be filtered using a Hanning Win- 
dow to form filtered data. The filtered data may be trans- 
formed into the frequency domain to form transformed data. 
The transformed data may be normalized before the acous- 
tical data is ready to be included as an input for the neural 
network. When at least two microphones are used to sample 
the acoustical signature, the normalized transformed data 
from a first microphone may be appended to a second 
microphone to form appended data prior to including the 
appended data as acoustical data for the neural network. A 
first microphone would sample a first acoustical signature. 
The first acoustical signature would be filtered using the 
Hanning window to form a first filtered data. The first 
filtered data may be transformed to form a first transformed 
data. The first transformed data may be normalized. A 
second microphone would sample a second acoustical sig- 
nature. The second acoustical signature would be filtered to 
form a second filtered data. The second data signal may be 
transformed to form a second transformed data. The second 
transformed data may be normalized. The first normalized 
transformed data and the second transformed data may be 
appended together to form appended data. A preferred 
method for the present invention may be to use at least four 
microphones when sampling the acoustical signature. The 
raw data from the acoustical signature sampled by the four 
microphones may then be appended together as described 
above, with the additional steps for the third and fourth 
microphone 

Once the neural network analyzes the inputs for a test 
weld joint andlor an examined weld joint and the neural 
network determines that a weld joint has a particular quality, 
such as acceptable, conditional, or unacceptable, the neural 
network may trigger an indicator to represent the quality of 
the weld joint analyzed. The indicator may be a LED, light, 
bleep, sound, pulse, output to a computer screen, etc. For 
example, the neural network would determine that a weld 
quality is either acceptable or unacceptable. An output of 1 
may represent the acceptable quality, while an output of 0 
may represent the unacceptable quality. This output may 
cause a green LED to illuminate on a quality determining 
apparatus, such as a computer, so that the user may recog- 
nize the quality of the weld joint as being acceptable. 
Illuminating a red LED may show an unacceptable quality. 
Alternatively, a chart may be created as an indicator using a 
quality determining apparatus to show the classification 
accuracy versus time to be used to determine the quality of 
a weld joint. The features within an acoustical signature may 
be identified to infer quality of the weld joint as indicated by 
the chart. 

The neural network process may be implemented or 
performed by a computer. The computer may process the 
inputs into the neural network and using the training pattern 
or learning process of the neural produce a binary output. 

In another preferred embodiment of the present invention, 
there is provided a method for training a neural network 
comprising the steps of inputting or providing acoustical 
data and observable data from at least one test weld joint, 
and training the neural network based on the acoustical data 
and the observable data to form a trained neural network. 
The trained neural network is capable of determining the 
quality of an examined weld joint based on acoustical data 
from the examined weld joint. The method for training a 
neural network may use a series of training patterns that may 
consist of sets of acoustical data andlor observable data. A 

neural network may be trained prior to determining the 
quality of an examined weld joint or a neural network may 
be trained while determining the quality of an examined 
weld joint. 

s A neural network may be trained using at least one test 
weld joint. Preferably, a neural network may be trained using 
a plurality of test weld joints, as described above. In 
additional, the training of a neural network may be examined 
weld joints when the training is to be performed continu- 

,, ously or is an adaptive to additional examined weld joints. 
A" 

When the neural network is being trained, the neural 
network may be capable of determining whether the exam- 
ined weld joint is acceptable or conditional. Additionally, the 
neural network may be capable of determining whether the 
examined weld joint is acceptable or unacceptable. The test 1s weld joint is known to be either acceptable, conditional, or 
unacceptable based on the observable data. 

In another preferred embodiment of the present invention, 
there is provided an apparatus comprising a housing, at least 
one acoustical sensors mounted in the housing, a means for 

20 
mounting at least one acoustical sensor, wherein the housing 
includes means for mounting the housing on a friction weld 
apparatus so that that at least one acoustical sensor can 
sample an acoustical signature from a weld joint. The 

25 
mounting of the apparatus on the friction weld apparatus 
may allow at least one acoustical sensor to sample an 
acoustical signature that may be used to trained a neural 
network to determine the quality of a weld joint. 

Preferably, the housing may be mounted on the friction 
30 weld device so that the acoustical sensor or sensors do not 

touch or contact the weld joint. Alternatively, the apparatus 
of the present invention may be mounted on another means, 
such as the floor or ceiling, so long as the acoustical sensors 
do not contact the weld joint. The present invention may 

3s have any number of acoustical sensors mounted in the 
housing. Preferably, at least 1 to 12 acoustical sensors are 
mounted in the housing. Preferably, the acoustical sensors 
are microphones. 

When at least two acoustical sensors are mounted in a 
40 housing, the acoustical sensors may be a substantially equal 

distance from the weld joint. Preferably, the acoustical 
sensors may be at least 0.1 cm to 20 cm in distance from the 
weld joint. More preferably, the acoustical sensor may be at 
least 1 cm to 10 cm in distance from the weld joint. Most 

4s preferably, the acoustical sensor may be at least 2 cm to 4 cm 
in distance from the weld joint. The distance may be in any 
plane or direction. In addition to the distance from the weld 
joint, the acoustical sensors may be spaced in the housing at 
an equal distance from each other. 

50 FIG. 1 shows a preferred embodiment of the present 
invention including an acoustical sensing apparatus 100 that 
consists of an acoustical sensor 102 that is mounted in a 
housing 104, which surrounds a work piece material 106 in 
a segmented collet 108. Acoustical sensor 102 is mounted in 

5s a cavity 110 on the housing 104. As shown in FIG. 1, there 
is a post 112 for mounting acoustical sensing apparatus 100 
to the friction weld device 114. Post 112 is connected to 
housing 104 at a proximal end. 

As shown in FIG. 1, acoustical sensing apparatus 100 is 
60 mounted in such a way so that acoustical sensor 102 does not 

contact work piece material 106, segmented collet 108 or 
segmented flywheel 116. Additional, the acoustical sensor 
102 does not contact the friction weld device 114. This 
allows to the acoustical sensing apparatus to operate as a 

65 noncontact acoustical sensing apparatus. 
FIGS. 2A, 2B and 2C show a preferred embodiment of the 

present invention including an acoustical sensing apparatus 



200 having a housing 204 that surrounds a segmented collet information to classify acceptable, conditional, and unac- 
208. A post 212 mounts acoustical sensing apparatus 200. ceptable welds. Apattern classification process may be used 
Post 212 is connected to housing 204 at a proximal end. A to further classify weld qualities of weld joints. 
base indicator 218 is connected to post 212 at a distal end. Pattern classification is only one of several forms of 
Base indicator 218 is connected to level 220 which are both 5 pattern recognition. Other commonly applied pattern recog- 
connected to a clamp 222. Clamp 222 is connected to a bar nition techniques include estimation, prediction, and control. 
224 which extends out from the friction weld device 214. The methodology of pattern classification for the present 

Preferably, the acoustical sensing apparatus is an acoustic invention may be similar to the methodology described in 
ring assembly. Preferably, the housing is shaped as alumi- Bezdek, J., Journal ofzntelligent and Fuzzy Systems, 1,l-25 
num ring. Preferably, the acoustical sensor is a microphone. 10 (1993), the entire contents of which are hereby incorporated 
Other acoustical sensor may be used such as a piezoelectric by reference. 
transducer, etc. Preferably, the means for mounting is FIG. 4 shows the pattern classification system 400 of the 
attached to the friction weld device by a clamp connected to present invention. Pattern classification system 400 involves 
a bar. The bar may be substantially parallel to the work piece iteratively revisiting the three modules, feature analysis 402, 
material in the segmented collet. The means for mounting 1s process description 404, and classifier design 406. 
the housing may also be attached to the floor or ceiling. The Modifications, shown by arrows 408, to a module results in 
Post may be used as a means for mounting and the Post is re-evaluating the pattern classification system 400 perfor- 
preferably % to % inch in diameter and most preferably is mance. The revisiting of the module continues until pattern 
Ys inch in diameter. classification system 400 (1) satisfied a given set of perfor- 

Preferably, the housing should have one to twelve cavi- 20 mance requirements and economic constraints or (2) failed 
ties. Multiple cavities should be an equal distance from to yield any acceptable results. 
every other cavity on the housing. The diameter of the The process description module of the present invention 
cavities for mounting the sensors is preferably %6 to 2 inch. may be captured with machine process data, such as speed, 
More preferably, the diameter is % to % inch. Most prefer- pressure and upset, and acoustical energy. Previous research 
ably the diameter is 3/16 inch. 25 as described in Hartman, D., Cola, M., and Dave, V., 

Preferably, the base indicator and level and connected by "Eliminating Post-Process Inspection of Inertia Friction 
means of a magnet. The level keeps the acoustical sensor in Welds Through In-Process, Quality-Based Monitoring," in 
level position with regards to the friction weld device. The 82nd Annual AWS Convention, Abstracts of Papers, 
level may also keep the acoustical sensor in a position so that Cleveland, Ohio, 2001, pp. 190-192, the entire contents of 
the acoustical sensors at an equal distance from the work 30 which are hereby incorporated by reference, demonstrated 
piece material in the segmented collet. the ability to detect and classify various defective conditions 

FIGS, 3A and 3B show a preferred embodiment of the in similar material, tubular inertia-friction welds using only 
present invention including an acoustical sensing apparatus machine Process data. 
300 having a housing 304. A post 312 mounts acoustical 35 The process description module of the present invention 
sensing apparatus 300. Post 312 is connected to housing 304 may determine the possible combination of sensing data that 
at a proximal end. A base indicator 318 is connected to post may yield classifiable features. Once the process description 
312 at a distal end. Base indicator 318 is connected to level module is determined, the next step is feature analysis 
320 which are both connected to a clamp 322. Clamp 322 is module. Feature analysis represents techniques that explore 
connected to a bar 324 which extends out from the friction 40 and improve upon raw data. Two methods of feature analysis 
weld device 314. are preprocessing, such as scaling, smoothing, interpolating 

As shown in FIG. 3 4  a ram 326 may hold the second and normalizing, and extracting, such as discrete Fourier 
work piece material. Friction weld device 314 may hold a transform and spectrogram. 
first work piece material. As shown in FIG. 3B, ram 326 is Classifier design module functions to find a partition 
moved toward friction weld device 314 so that a friction 45 within the process description data that yields a computa- 
weld may be formed using both work piece materials. As tionally explicit, e.g., discriminant functions andlor nearest 
shown in FIG. 3B, acoustical sensing apparatus 300 does not prototype rules, or implicit, e.g., multilayered Perceptrons 
contact either the ram 326 or the friction weld device 314. andlor k-nearest neighbor rules, decision function. A super- 

FIG. 3C shows a ram 326 having a second segmented 
collet 328. Second segmented collet 328 may hold a second so 
work piece material (not shown) that can be used to form a 
friction weld. 

Acoustical sensing apparatus of the present invention 
samples the acoustical emissionlenergy (AE) or acoustical 
signature in the form of sound pressure that is emitted during 5s  

the friction welding processes, such as the plastic deforma- 
tion and phase transformation. The acoustical sensing appa- 
ratus may be able to sample at least the rapid release of 

vised classifier design using a probabilistic neural network 
(PNN) may be used. The smoothing parameter, a, is the only 
parameter affecting the performance of a basic PNN. 

The development of PNN is described in Specht, D., 
"Probabilistic Neural Networks for Classification, Mapping 
or Associative Memory," in Proceedings of the ZEEE Znter- 
national Conference on Neural Networks, 1988, vol. 1, pp. 
525-532, and Specht, D., Neural Networks, 3, 109-118 
(1990), the entire contents and disclosure of which are 
hereby incorporated by reference. The PNN is a feed for- 

energy, such as sound or pressure, due to mechanical, 
thermal and metallurgical phenomenon that may occur dur- 
ing welding. 

The noncontact acoustical sensing apparatus of the 
present invention may be used to identify features within the 
acoustical emission or acoustical signature of an inertia- 
friction weld that arc indicative of weld characteristics, such 
as bond quality. A probabilistic neural network (PNN) may 
be used to analyze the acoustical emission's frequency 

ward neural implementation of Bayesian classifiers that 
60 provides a framework for solving pattern classifications. 

FIG. 5 illustrates a two-category decision architecture for the 
Basic PNN. Other, more complex, implementations of a 
PNN exist including adaptive learning techniques and clus- 
tering algorithms. Any type of PNN may be used for the 

65 present invention. 
FIG. 5 is a two-category decision network 500 consisting 

of four neural layers: input 502, pattern 504, summation 506, 
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and decision 508. Each layer has a different and specific 
function. The two-category decision network 500 may be 
organized based on an input matrix that is represented by a 
p-dimensional vector, x'=[x, . . . , Xj . . . , X, . . . J]. The 
input units 510 distribute the same input values 512 to all of 
the pattern units 514 in the network 500, i.e. the two layers 
are full connected. The input units may consist of acoustical 
data andlor observed data. Each pattern unit 514 calculates 
the dot product 516 of the pattern vector X with the weight 
vector Wi: 

Z,=X W, Equation 1 

and then applies a nonlinear activation function, such as an 
exponential function to give each pattern neuron its output: 

where a is the smoothing parameter. When X and W are 
normalized to unit length, Equation 2 represents a simpli- 
fication of Parzen's probability density function (PDF) 
estimator, as described in Parzen, E., Annals of Mathernati- 
cal Statistics, 33, 1065-1076 (1962), the entire contents of 
which are hereby incorporated by reference. 

Since a priori knowledge in a typical neural network 
classification problem is the training patterns, the training 
patterns in the implementation of a Basic PNN therefore 
provide the probability densities for the categories to be 
separated. As such, the Basic PNN uses one pattern neuron 
for each pattern in the training set. 

As shown in FIG. 5, the summation layer 506 contains 
one summation unit 518 per category. Each summation unit 
518 sums the outputs from the pattern units 514 that are 
associated with its category. The output of the summation 
neurons is then passed to the decision layer neurons 520. The 
decision neurons 520 implement Bayes' strategy for classi- 
fication as described in Gelman, A,, Carlin, J., Stern, H., and 
Rubin, D., Bayesian Data Analysis, CRC Press, Boca Raton, 
Fla., 1995, 1st edn., the entire contents of which are hereby 
incornorated bv reference. 

Bayes' strategy for classification minimizes the expected 
risk by implementing Bayes decision rule. For a two- 
category problem, Bayes decision rule becomes: 

where: hA is the a priori probability that the input pattern is 
form category A, h, is the a priori probability that the input 
pattern is form category B(h,=l-hA for two-category 
problems); I, is the loss associated with the incorrect 
decision, i.e., d(X)=0, when 0=0,; I, is the loss associated 
with the incorrect decision, i.e., d(X)=0, when 0=0,. 

The decision layer neurons 520 are two-input neurons that 
produce a binary output based on a single variable weight: 

Equation 4 

where nA equals the number of training patterns from 
category A and n, equals the number of training patterns 
from category B. In general, the values for calculating the 
ratio C are determined by the use relative to the significance 
of the decision. When there is no reason to bias the decision, 
then the ration C may be simplified to an inverter, i.e., C=-1. 

Training may be accomplished by iterating only once 
through the training vectors. For each training pattern: (1) a 

new pattern neuron is created, (2) its weight vector Wi is set 
equal to each of the X values in the training pattern, and (3) 
the output of the pattern neuron is connected to the appro- 
priate summation unit. Several important consequences may 

s arise out of the PNN's unique architecture and training 
method. First, a PNN can begin classifying after having just 
one training pattern from each category. Second, a PNN is 
orders of magnitude faster to train than a traditional back 
propagation neural network. Third, a PNN can be shown to 

10 asymptotically approach Bayes' optimal decision surface 
without the possibility of getting stuck in local minima. 
Fourth, a PNN architecture is conductive to enabling a 
human to understand how the network works. A PNN is a 
preferred means used by the method of the present invention 

IS for exploring data sets in which the structure is ill-defined 
and that contain both deterministic and random signals. The 
present invention may also use other pattern classification 
techniques, such as, adaptive probabilistic neural network, 
fuzzy classification, linear discriminant analysis, other 

20 multi-layer neural networks, and unsupervised learning and 
clustering techniques. 

The present invention may be used with a variety of 
solid-state welding techniques. Solid-state welding tech- 
niques are different from arc welding in that solid-state 

25 welding techniques do not require shielding gases, fluxes, 
and filler metal to achieve a bond between two materials. 
Solid-state welding is the preferred method of joining mate- 
rials in which melting, and hence mixing, of the base 
materials is not desired. Solid-state welding (SSW) pro- 

30 cesses accomplish joining by applying pressure or pressure 
and heat to the workpiece to form a metallurgical bond. The 
temperature at which joining is performed is well below the 
melting point but at or above the forging temperature of the 
base metal. 

35 There are several types of solid-state welding techniques 
that are described in the Welding and Joining Handbook, 
American Welding Society, Vol 1. (9th Ed. 2001), the entire 
contents of which are hereby incorporated by reference. Two 
of the preferred solid-state welding techniques of the present 

40 invention are friction welding, including direct drive friction 
welding and inertia drive friction welding, and friction stir 
welding. Friction welding (FRW) converts mechanical 
energy into heat through rotational and compressive forces 
that are applied to the work-piece materials. The two major 

45 process variations of friction welding exist: (1) direct drive 
friction welding (sometimes called conventional friction 
welding) and (2) inertia drive friction welding (commonly 
referred to as inertia friction welding or flywheel friction 
welding). Inertia friction welding relies on the kinetic energy 

so stored in the rotating flywheel to be dissipated as heat due to 
the frictional forces at the faying surfaces. In contrast, direct 
drive friction welding utilizes a motor-driven rotational 
force that translates force into heat. The rotation is main- 
tained for a fixed period of time and is stopped by the 

ss application of a braking force. 
In both processes, a friction-welding machine rotates one 

part while the other is held stationary and forces them 
together. FIGS. 11A-11E display a schematic illustration of 
the stages of the friction welding process of a preferred 

60 embodiment of the present invention. In FIG. 11A, stage one 
involves compressed work-piece 1102 and a rotating work- 
piece 1104. Compressed work-piece 1102 does not rotate or 
move. Rotating work-piece 1104 is rotate at a predetermined 
speed. In FIG. 11B, stage two involves compress ing com- 

65 pressed work-piece 1102 into rotating work-piece 1104. An 
axial force is applied between compressed work-piece 1102 
and rotating work-piece 1104. In FIG. 11C, the compressive 
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and frictional forces produces heat causing the displacement 
of the material or flash 1106 at the faying surface 1108 of the 
compressed work-piece material 1102 and the faying surface 
by 1110 of the rotating work-piece 

The frictional heat raises the material to its forging 
temperature while pressure is applied to create the weld. In 
FIG. 11D, rotation of rotating work-piece 1104 is stopped 
and axial force is maintained for a predetermined amount of 
time to complete the weld joint 1112. 

Friction stir welding is a variation of the friction welding 
process. The friction stir welding was developed at The 
Welding Institute (TWI). The friction stir welding process 
applies a nonconsumable rotating tool between the faying 
surfaces of a butt joint while the workpieces are firmly held 
in place. The tool is pushed down, i.e., plunged, into the 
material to a preset depth. Once plunged, a weld is produced 
through the generation of a high enough temperature that 
allows stirring of the hot metal as the tool travels along the 
length of the joint. Unlike the friction welding processes, 
both direct and inertia, the work-piece in the friction stir 
welding process is restricted from movement while a rotat- 
ing tool generates frictional heat and, thereby, induces gross 
plastic deformation of the work-piece material. 

As shown in FIG. 12, there is a friction stir welding 
machine 1200. A tool 1202 of friction stir welding machine 
1200 is composed of a steel shaft 1204 and a pin 1206. Tool 
1202 is mounted in a spindle 1208. In the first stage of the 
friction stir welding process, a butt joint 1210 is formed by 
mating the edges of two work-pieces 1212 and 1214. A 
means for fixing (not shown) two work-pieces 1212 and 
1214 is preferred to prevent spreading or lifting of the 
work-pieces during the friction stir weld process. In the 
second stage, tool 1202 is rotated at a predetermined spindle 
speed. In stage 3, tool 1202 plunges into the work-pieces 
1212 and 1214 at the butt joint 1210 to a preset depth. Pin 
1206 of tool 1202 travels into the work-pieces 1212 and 
1214. Friction stir welding machine 1200 traverses along the 
butt joint 1210 to form the weld joint 1216. 

The acoustical sensing method and device of the present 
invention may be placed in a position to surround the tool or 
swindle of the friction stir weld machine to collect acoustical 
data from the function weld. Preferably, the position would 
not contact the work-pieces. 

EXAMPLE 1 

In one example of the preferred embodiment of the 
present invention, bar-to-bar inertia friction welding of 
copper to 304 L stainless steel was used. This material 
combination exhibits only marginal weldability and is ide- 
ally suited for validating the capabilities of the preferred 
embodiment of the present invention. 

In this example, oxygen-free, high-conductivity (OFHC) 
copper bar nominally 1-inch diameter and annealed Type 
304L stainless steel bar nominally 0.5-inch diameter were 
used. OFHC copper is essentially 99.99 percent pure, while 
304 L is a low carbon grade of austenitic stainless steel. 
About three weeks before welding each specimen was given 
a preliminary machining step to ensure a faying surface 
finish of 32 pin. 

In this example, welding was conducted using an MTI 
Model 90B inertia friction welding system. Initial parameter 
selection was based upon work described in Bell, R. A,, 
Lippold, J. C., and Adolphson, D. R., Welding Journal, 63, 
325s-332s (1984), the entire contents and disclosure of 
which are hereby incorporated by reference, but altered 
slightly by this example to accommodate differences in 
available inertial mass. The welding parameters remained 
constant throughout this investigation and are shown in FIG. 
6. 

Selected copper specimens were machined immediately 
before welding while bathed in isopropyl alcohol. Others 
were welded as-is, i.e., without further machining to remove 
surface oxidation that might have occurred while at ambient 

s temperature and pressure for up to five weeks prior to 
welding. In all cases, the stainless steel was rotated during 
the weld cycle while the copper remained fixed. Lastly, the 
specimens extended from the spindle and fixture collets by 
approximately one diameter. 

10 A noncontact acoustical sensing apparatus, having an 
array of acoustical sensors, surrounds the weld joint and may 
be used to collect the rapid release of energy (sound 
pressure) due to the mechanical, thermal, and metallurgical 
phenomenon occurring during friction welding. The acous- 

15 tical sensors used in this example are off-the-shelf electret 
condenser microphones. 

The noncontact acoustical sensing apparatus accurately 
measures sound pressures at audio frequencies in the air. Up 
to twelve microphones can be held in the housing. FIG. 1 

20 illustrates a preferred embodiment used in this example, in 
which four microphones are evenly placed in the housing. 
FIGS. 2A-3C illustrate a preferred embodiment of the 
acoustical sensor mounted to the friction weld device used 
in this example. 

25 The acoustical signature was sampled at 40 kHz per 
channel. Calibration of the microphones was accomplished 
by comparing it to a calibrated ~ i e l  & Kjaer condenser 
microphone, type 4133, within the frequency sensitivity 
range of the sensor's microphones. 

30 
Standard metallographic procedures were used to prepare 

selected svecimens to a 1-um finish. Microstructural features 
were revealed by using a double etching procedure com- 
prising a 5% ammonium persulphate etch for the OFHC 

35 
copper followed by an electrolytic 10% oxalic acid etch for 
the stainless steel. Light microscopy up to lOOx magnifica- 
tion revealed salient features of the bond interface and 
surrounding heat and deformation zone (HDZ). 

A semi-quantitative evaluation of each weld joint was 
,, performed using unguided bend testing. As-welded, full-size 
7" 

specimens were tested. Image analysis techniques were used 
to determine the percent of bonded area after fracturing each 
specimen. A microharness survey was conducted across the 
joint interface using a 200 g load and Vickers indenter for a 

,, dwell time of 15 seconds. 
7 d  

A probabilistic neural network (PNN) was used as the 
classifier in this example. 

A series of neural network trainings and trials was per- 
formed in an effort to search for features that could be used 

so to correlate the acoustical signature or AE data to weld bond 
quality. As shown in FIG. 4, any modifications to either the 
process description, feature analysis, or classifier design 
resulted in re-running the system and evaluating its perfor- 
mance. The variables listed in FIG. 7 were modified during 

55 the iterative development of the pattern recognition system. 
Three different classifications were investigated: (1) 

acceptable and unacceptable, (2) acceptable and conditional, 
and (3) acceptable, conditional, and unacceptable. A moving 
window discrete Fourier transform (DFT) was performed on 

60 the acoustical signature or AE data using the fast Fourier 
transform (FFT) algorithm. A step size of 250 data points 
was used to move through the time-domain data (120,000 
samples, 3 seconds at 40 kHz) without overlap. 

Each segment of the time-domain data was filtered using 
65 a Hanning Window and then transformed into the frequency 

domain. Finally, the transformed data was then normalized 
prior to including it in the training patterns as acoustical data 
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for the PNN. For multiple microphones, the normalized and apparent discontinuities or lack of bonding. However, the 
transformed data was appended to the other microphone's refined grain size on the copper side of the interface is 
transforms before including it in the training patterns as readily distinguishable from the stainless steel where a very 
acoustical data for the PNN. narrow band (approximately 5 pm) of deformation appears 

Each window increment within the acoustical data 5 immediately adjacent to the interface. 
resulted in a complete training and testing of the PNN's Qualitative bond area from unguided bend test results are 
ability to classify bond quality. Training consisted of (1) summarized in FIG. 8 and illustrated in FIGS. 9A-9F. In this 
removing one pattern from the training data, (2) training the example, the test results are semi-quantitative because the 
PNN, and (3) testing the PNN with the removed pattern. actual force required for failure was not measured. 
This was repeated for each pattern within the set. The PNN's 10 Nonetheless, sufficient information exists to render a deter- 
accuracy in classifying bond quality was then determined by mination of acceptable bond quality based on fracture sur- 
summing the total number of correct classifications and face morphology and percent of interface area bonded. 
dividing by the total number of training patterns. Image analysis of the fracture surfaces provided a reason- 

The result of this training and testing phase will yield a able approximation of the percent of interface area bonded 
graph showing classification accuracy vs. time. This graph for specimens exhibiting less than 100% bonding. 
identifies the location of features within the acoustical In FIG. 9A, there is a copper rod 902 that is welded to a 
signature that can be used to infer bond quality. Once this is stainless steel rod 904. Aflash 906 is shown between copper 
determined, future work can improve upon the process rod 902 and stainless steel rod 904. In FIG. 9B, there is a 
description, feature analysis, and classifier design in an copper rod 902' that is welded to a stainless steel rod 904'. 
effort to build a robust, in-process monitoring system for 20 A flash 906' is shown between copper rod 902' and stainless 
inertia friction welding and, potentially, for other friction steel rod 904' In FIG. 9C, there is a copper rod 902" that is 
welding processes. welded to a stainless steel rod 904". A flash 906" is shown 

The trainingitesting method used in this example was between copper rod 902" and stainless steel rod 904". 
motivated out of a limited size of the available data set. In FIG. 9D, a copper rod 910 has a bonded area 912 and 
Commonly referred to as the single holdout method, the 25 a stainless steel rod 914 has a bonded area 916. In FIG. 9E, 
trainingitesting method holds out one data point from the copper rod 910' has a bonded area 912' and stainless steel rod 
n-sized data set for testing while the remaining n-1 data 914' has a bonded area 916'. In addition, copper rod 910' has 
points in the data set are used for training. This procedure is an unbonded area 918' and stainless steel rod 914' has an 
repeated until all data points in the data set have been tested unbonded area 920'. In FIG. 9E, copper rod 910" has an 
independently. Classification accuracy is calculated based 30 unbonded area 918" and stainless steel rod 914" has an 
on the sum of the correctly classified data points minus the unbonded area 920". 
sum of the incorrectly classified data points divided by n. Specimens having acceptable bond quality exhibited duc- 

Although the experimental matrix was designed with only tile tearing through the copper without any lack of bonding, 
one variable in mind (surface preparation of the copper), 35 as shown in FIGS. 9A and 9D. Specimens having a condi- 
three different quality welds were generated: (1) Acceptable: tional bond quality are shown in FIGS. 9B and 9E. Speci- 
bonded area is approximately 100%; (2) Conditional: mens having an unacceptable bond quality are shown in 
bonded area is less than 100% but greater than 5%; and (3) FIGS. 9C and 9F. However, all of the specimens that were 
Unacceptable: bonded area is less than 5%. welded as-is, i.e., not freshly machined, exhibited a lack of 

FIG. 8 is a table showing the conditional weld joints were 40 bonding over the majority of the interface. Generally, the 
prepared in the same manner as the acceptable weld joints, as-welded specimens exhibited little to no ductile features 
namely by freshly machining the work piece materials. This on the fracture surfaces. Lastly, there are those specimens 
demonstrates the difficult nature of joining these two work that exhibited conditional bond quality and are order ranked 
piece materials. between acceptable and unacceptable as shown in FIG. 8. 

After welding, each specimen was visually inspected for 45 FIGS. 10A-1OE illustrates the results from this example. 
uniformity and color of weld flash. FIGS. 9A-9F illustrates In this example, four microphones yielded improved accu- 
a typical flash and fracture surface for each category of weld. racy over one microphone and was comparable to or better 
All specimens exhibited a symmetric flash with a light than two microphones. FIG. 10A, graphically represents the 
golden color, Moreover, the amount of upset (or reduction in rotating speed involved in the friction weld process of this 
length [RIL]) was approximately equal and predominately so example. FIG. 10B, graphically represents the typical acous- 
occurred in the copper. Moreover, the fact that the RIL's tical signature from a weld joint. 
were approximately equal, yet acceptable, conditional, and As shown in FIG. 10C, acceptable and unacceptable bond 
unacceptable welds resulted, suggests that RIL alone is an quality can be reliably detected under most parameter com- 
insufficient measure of bond quality as shown in FIG. 8. binations that were investigated. This example showed that 

Specimens that were machined immediately before weld- 5s the differences in the copper's surface preparation mani- 
ing exhibited a copper-side HDZ that was uniform across the fested in the acoustical signature at the end of the weld. 
diameter-as expected. This type of HDZ shape indicates Specifically, in the time period at approximately 2.5 seconds 
that the part's speed was at least sufficient to ensure center to 3 seconds, an acceptable bond quality was determined. 
heating. Specimens that were welded as-is had a HDZ shape As shown in FIG. 10D, acceptable and conditional bond 
that was narrowest at the center indicating insufficient heat 60 quality was detected in but further work needs to be per- 
generation not from lack of speed since all parameters formed to verify and enhance this result. The features for 
remained constant, but rather due to insufficient oxide distinguishing between an acceptable and conditional bond 
removal during the upsetlforging phase. The microstructural appear at a different location within the acoustical signature 
features observed on each side of the joint interface were as than they do for an acceptable and unacceptable bond. In 
expected given the large difference in yield strength between 65 particular, conditional bond quality is detected at approxi- 
the copper and stainless steel. At high magnification, the mately 1.3 seconds after contact is made between the faying 
interface of a typical as-welded specimen exhibited no surfaces. 
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For this result, the classification system was unsuccessful 5. The method of claim 1, wherein said neural network is 
at finding three partitions within the data space that could trained by a method comprising the following steps: 
accurately identify and discriminate between the three dif- inputting acoustical data from at least one test weld joint; 
ferent bond quality classes, as shown in FIG. 10E. It is inputting observable data from said at least one test weld 
possible that the classifier's inability to discriminate joint; and 
between all three classes is due to an insufficient number of training said neural network based on said acoustical data 
training vectors. Furthermore, additional feature analysis and said observable data to form a trained neural 
techniques and improved learning algorithms might rectify network so that said trained neural network is capable 
this shortcoming. 10 of determining the quality of said examined weld joint 

The results produced by this example showed a successful based on acoustical data from said examined weld 

bond quality classification system which used a novel, joint. 

non-contact, acoustical emission sensing technique that: (1) 6. The method of claim 5, wherein said neural network is 
further trained by a method comprising the following steps: identifies features within the acoustical signature of an 

inertia friction weld that are indicative of the process~s providing acoustical data from a first examined weld 

ability to produce a quality bond; (2) provides a real-time joint; and 

response with minimal hardware requirements; and (3) training said trained neural network based on said acous- 

tolerates noisy and ill-defined data. tical data to form an adapted trained neural network so 
20 that said adapted trained neural network is capable of 

The results produced by this example may be extended determining the quality of an second examined weld 
into these other areas: (1) compare and contrast the non- joint based on acoustical data from said second exam- 
contact sensing capabilities of this sensor with a piezoelec- ined weld joint. 
tric transducer as described in Wang, K., Reif, G., and Oh, 7. The method of claim 1, wherein said method is per- 
S., "In-Process Quality Detection of Friction Welds Using 2s formed in real-time while said examined weld joint is 
Acoustic Emission Techniques," Welding Journal, 61, formed from said friction weld process. 
312s-316s (September 1982), the entire contents of which 8. The method of claim 1, wherein said acoustical data 
are hereby incorporated by reference; (2) generate a larger comprises samples of an  usti tical signature from said 

experimental matrix to include conditions (e examined weld joint sensed by at least one acoustical sensor. 

g,, fingerprints) to freshly machined surfaces; (3) determine 30 9. The method of claim 8, wherein said acoustical data is 

the directional characteristics of the sensing ring, (4) inves- based on frequency information, and wherein said frequency 

tigate other feature extraction methods, such as, wavelets information is obtained by using a discrete Fourier transform 

and spectograms; and (5) analyze the data with other neural On Said "gnature. 

network techniques, such as, an adaptive probabilistic neural 35 
lo' The method of 'laim wherein said data 

comprises samples of an acoustical signature from said 
network. 

examined weld ioint using at least two acoustical sensors. - 
Although the present invention has been fully described in 11. The method of claim 10, wherein said acoustical data 

conjunction with the preferred embodiment thereof with is based on frequency information and phase information, 
reference to the accompanying drawings, it is to be under- 40 wherein said frequency information obtained using a dis- 
stood that various changes and modifications may be appar- crete Fourier transform on said acoustical signature, and 
ent to those in the art, such changes and modifica- wherein said phase information is based on a time-domain 
tions are to be understood as included within the scope of the relationship between said at least two acoustical sensors. 

present invention as defined by the appended claims, unless 12. The wherein step (b) is imp1e- 

they depart therefrom. 45 mented in a computer. 
13. The method of claim 1, wherein said neural network 

What is claimed is: is a probabilistic neural network (PNN). 
A for determining the quality an examined 14. Amethod for training a neural network comprising the 

weld joint comprising the following steps: following steps: 
so 

(a) providing acoustic data from said examined weld providing acoustical data from at least one test weld joint; 
joint; and providing observable data from said at least one test weld 

(b) performing neural network operations on said acous- joint; and 

tical data to determine the quality of said examined training said neural network based on said acoustical data 
joint, wherein said examined joint is pro- ss and said observable data to form a trained neural 

duced by a friction weld process. network so that said trained neural network is capable 

2. The method of claim 1, wherein step (b) comprises of determining the quality of an examined weld joint 
based on acoustical data from said examined weld determining whether said examined weld joint is acceptable 
joint. 

or conditional. 
60 15. The method of claim 14, wherein said neural network 

3. The 2, wherein step (b) further is capable of determining whether said examined weld joint 
comprises determining whether said examined weld is is acceptable or conditional, 
acceptable or unacceptable, wherein said examined weld 16. The method of claim 14, wherein said neural network 
joint is acceptable, conditional or unacceptable. is capable of determining whether said examined weld joint 

4. The method of claim 1, wherein step (b) comprises 65 is acceptable or unacceptable. 
determining whether said examined weld joint is acceptable 
or unacceptable. * * * * *  


