44 research outputs found

    Planktic foraminifera iodine/calcium ratios from plankton tows

    Get PDF

    Halogen chemistry reduces tropospheric O3 radiative forcing

    Get PDF
    Tropospheric ozone (O3) is a global warming gas, however the lack of a firm observational record since the preindustrial period means that estimates of its radiative forcing (RFTO3) rely on model calculations. Recent observational evidence shows that halogens are pervasive in the troposphere and need to be represented in chemistry-transport models for an accurate simulation of present-day O3. Using the GEOS-Chem model we show that tropospheric halogen chemistry is more active in the present-day than in the pre-industrial. This is due to increased oceanic iodine emissions driven by increased surface O3, higher anthropogenic emissions of bromo-carbons and an increased flux of bromine from the stratosphere. We calculate pre-industrial to present-day increases in the tropospheric O3 burden of 113 Tg without halogens but only 95 Tg with, leading to a reduction in RFTO3 from 0.432 to 0.366 W m−2. We attribute ~ 40 % of this reduction to the ocean-atmosphere iodine feedback, ~ 30 % to increased anthropogenic halogens in the troposphere and ~ 30 % to increased bromine flux from the stratosphere. This reduction of RFTO3 (0.066 W m−2) is greater than that from stratospheric ozone (~ 0.05 W m−2). Estimates of RFTO3 that fail to consider halogen chemistry are likely overestimates (~ 20 %)

    An improved estimate of inorganic iodine emissions from the ocean using a coupled surface microlayer box model

    Get PDF
    Iodine at the ocean's surface impacts climate and health by removing ozone (O3) from the troposphere both directly via ozone deposition to seawater and indirectly via the formation of iodine gases that are released into the atmosphere. Here we present a new box model of the ocean surface microlayer that couples oceanic O3 dry deposition to inorganic chemistry to predict inorganic iodine emissions. This model builds on the previous work of Carpenter et al. (2013), improving both chemical and physical processes. This new box model predicts iodide depletion in the top few micrometres of the ocean surface due to rapid chemical loss to ozone competing with replenishment from underlying water. From this box model, we produce parameterized equations for HOI and I2 emissions, which are implemented into the global chemical transport model GEOS-Chem along with an updated sea surface iodide climatology. Compared to the previous model, inorganic iodine emissions from some tropical waters decrease by as much as half, while higher-latitude emissions increase by a factor of ≫10. With these large local changes, global total inorganic iodine emissions increased by ∼49 % (2.99 to 4.48 Tg) compared to the previous parameterization. This results in a negligible change in average tropospheric OH (<0.2 %) and tropospheric methane lifetime (<0.2 %). The annual mean tropospheric O3 burden decreases (−1.5 % to 325 Tg); however, higher-latitude surface O3 concentrations decrease by as much as 20 %

    Negligible temperature dependence of the ozone–iodide reaction and implications for oceanic emissions of iodine

    Get PDF
    The reaction between ozone and iodide is one of the main drivers of tropospheric ozone deposition to the ocean due to the ubiquitous presence of iodide in the ocean surface and its rapid reaction with ozone. Despite the importance of this sea surface reaction for tropospheric ozone deposition and also as the major source of atmospheric iodine, there is uncertainty in its rate and dependence on aqueous-phase temperature. In this work, the kinetics of the heterogeneous second-order reaction between ozone and iodide are investigated using conditions applicable to coupled ocean–atmosphere systems (1 × 10−7–1 × 10−5 M iodide; 40 ppb ozone; 288–303 K; 15.0 psi). The determined Arrhenius parameters of A = 5.4 ± 23.0 × 1010 M-1s-1 and Ea = 7.0 ± 10.5 kJ mol−1 show that the reaction has a negligible positive temperature dependence, which could be weakly negative within errors. This is in contrast to a previous study that found a strong positive activation energy and a pre-exponential factor many orders of magnitude greater than determined here. The re-measured kinetics of ozone and iodide were used to constrain a state-of-the-art sea surface microlayer (SML) model. The model replicated results from a previous laboratory study of the temperature dependence of hypoiodous acid (HOI) and molecular iodine (I2) emissions from an ozone-oxidised iodide solution. This work has significance for the global modelling of the dry deposition of ozone to the ocean and the subsequent emissions of iodine-containing species, thus improving the understanding of the feedback between natural halogens, air quality and climate change.</p

    Water-Soluble Organic Composition of the Arctic Sea Surface Microlayer and Association with Ice Nucleation Ability

    Get PDF
    Organic matter in the sea surface microlayer (SML) may be transferred to the atmosphere as sea spray and hence influence the composition and properties of marine aerosol. Recent work has demonstrated that the SML contains material capable of heterogeneously nucleating ice, but the nature of this material remains largely unknown. Water-soluble organic matter was extracted from SML and underlying seawater from the Arctic and analyzed using a combination of mass spectrometric approaches. High performance liquid chromatography-ion trap mass spectrometry (LC-IT-MS), and Fourier transform ion cyclotron resonance MS (FT-ICR-MS), showed seawater extracts to be compositionally similar across all stations, whereas microlayer extracts had a different and more variable composition. LC-IT-MS demonstrated the enrichment of particular ions in the microlayer. Ice nucleation ability (defined as the median droplet freezing temperature) appeared to be related to the relative abundances of some ions, although the extracts themselves did not retain this property. Molecular formulas were assigned using LC-quadrupole time-of-flight MS (LC-TOF-MS2) and FT-ICR-MS. The ice nucleation tracer ions were associated with elevated biogenic trace gases, and were also observed in atmospheric aerosol collected during the summer, but not early spring suggesting a biogenic source of ice nuclei in the Arctic microlayer

    Surface Inorganic Iodine Speciation in the Indian and Southern Oceans From 12°N to 70°S

    Get PDF
    Marine iodine speciation has emerged as a potential tracer of primary productivity, sedimentary inputs, and ocean oxygenation. The reaction of iodide with ozone at the sea surface has also been identified as the largest deposition sink for tropospheric ozone and the dominant source of iodine to the atmosphere. Accurate incorporation of these processes into atmospheric models requires improved understanding of iodide concentrations at the air-sea interface. Observations of sea surface iodide are relatively sparse and are particularly lacking in the Indian Ocean basin. Here we examine 127 new sea surface (≤10 m depth) iodide and iodate observations made during three cruises in the Indian Ocean and the Indian sector of the Southern Ocean. The observations span latitudes from ∼12°N to ∼70°S, and include three distinct hydrographic regimes: the South Indian subtropical gyre, the Southern Ocean and the northern Indian Ocean including the southern Bay of Bengal. Concentrations and spatial distribution of sea surface iodide follow the same general trends as in other ocean basins, with iodide concentrations tending to decrease with increasing latitude (and decreasing sea surface temperature). However, the gradient of this relationship was steeper in subtropical waters of the Indian Ocean than in the Atlantic or Pacific, suggesting that it might not be accurately represented by widely used parameterizations based on sea surface temperature. This difference in gradients between basins may arise from differences in phytoplankton community composition and/or iodide production rates. Iodide concentrations in the tropical northern Indian Ocean were higher and more variable than elsewhere. Two extremely high iodide concentrations (1241 and 949 nM) were encountered in the Bay of Bengal and are thought to be associated with sedimentary inputs under low oxygen conditions. Excluding these outliers, sea surface iodide concentrations ranged from 20 to 250 nM, with a median of 61 nM. Controls on sea surface iodide concentrations in the Indian Ocean were investigated using a state-of-the-art iodine cycling model. Multiple interacting factors were found to drive the iodide distribution. Dilution via vertical mixing and mixed layer depth shoaling are key controls, and both also modulate the impact of biogeochemical iodide formation and loss processes

    A self-consistent, multi-variate method for the determination of gas phase rate coefficients, applied to reactions of atmospheric VOCs and the hydroxyl radical

    Get PDF
    Gas-phase rate coefficients are fundamental to understanding atmospheric chemistry, yet experimental data are not available for the oxidation reactions of many of the thousands of volatile organic compounds (VOCs) observed in the troposphere. Here a new experimental method is reported for the simultaneous study of reactions between multiple different VOCs and OH, the most important daytime atmospheric radical oxidant. This technique is based upon established relative rate concepts but has the advantage of a much higher throughput of target VOCs. By evaluating multiple VOCs in each experiment, and through measurement of the depletion in each VOC after reaction with OH, the OH + VOC reaction rate coefficients can be derived. Results from experiments conducted under controlled laboratory conditions were in good agreement with the available literature for the reaction of nineteen VOCs, prepared in synthetic gas mixtures, with OH. This approach was used to determine a rate coefficient for the reaction of OH with 2,3-dimethylpent-1-ene for the first time; k = 5.7 (±0.3) × 10–11–cm3 molecule−1 s−1. In addition, a further seven VOCs had only two, or fewer, individual OH rate coefficient measurements available in the literature. The results from this work were in good agreement with those measurements. A similar dataset, at an elevated temperature of 323 (±10) K, was used to determine new OH rate coefficients for twelve aromatic, five alkane, five alkene and three monoterpene VOC + OH reactions. In OH relative reactivity experiments that used ambient air at the University of York, a large number of different VOCs were observed, of which 23 were positively identified. 19 OH rate coefficients were derived from these ambient air samples, including ten reactions for which data was previously unavailable at the elevated reaction temperature of T = 323 (±10) K
    corecore