642 research outputs found

    Bony-Tongue Fishes (Teleostei: Osteoglossomorpha) from the Eocene Nanjemoy Formation, Virginia

    Get PDF
    Bony-tongue fishes, Osteoglossomorpha, are distributed in North and South America, Africa, Asia, and Australia and are found on all continents except Antarctica in the fossil record. The group includes fishes such as the mooneyes (Hiodontidae), freshwater knifefishes (Notopteridae), elephantfishes (Mormyridae), and the arowanas and pirarucu (Osteoglossidae). Remains identified as belonging to the family Osteoglossidae are known from the Nanjemoy Formation of Maryland and northern Virginia and comprise isolated teeth and fragmentary jaw bones assigned to the now extinct †Brychaetus muelleri. The second author discovereda partial toothed parasphenoid among other isolated and frag-mentary vertebrate microfossils from the Fisher–Sullivan Site of the Nanjemoy Formation in northern Virginia. This element resembles the base of the parasphenoid of the extant osteoglossid taxa Osteoglossum and Scleropages. Although this fossil is fragmentary and not sufficient to differentially diagnose taxonomically, it provides further evidence of the substantial diversity of Osteoglossidae during the Eocene

    Entropy stable wall boundary conditions for the three-dimensional compressible Navier-Stokes equations

    Full text link
    Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the three-dimensional compressible Navier--Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators on unstructured grids are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite difference, finite volume, discontinuous Galerkin, and flux reconstruction/correction procedure via reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.Comment: 43 page

    Entropy Stable Wall Boundary Conditions for the Compressible Navier-Stokes Equations

    Get PDF
    Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite volume, finite difference, discontinuous Galerkin, and flux reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions

    Resolved Young Binary Systems And Their Disks

    Get PDF
    We have conducted a survey of young single and multiple systems in the Taurus–Auriga star-forming region with the Atacama Large Millimeter Array (ALMA), substantially improving both the spatial resolution and sensitivity with which individual protoplanetary disks in these systems have been observed. These ALMA observations can resolve binary separations as small as 25–30 au and have an average 3σ detection level of 0.35 mJy, equivalent to a disk mass of 4 × 10−5 M ⊙ for an M3 star. Our sample was constructed from stars that have an infrared excess and/or signs of accretion and have been classified as Class II. For the binary and higher-order multiple systems observed, we detect λ = 1.3 mm continuum emission from one or more stars in all of our target systems. Combined with previous surveys of Taurus, our 21 new detections increase the fraction of millimeter-detected disks to over 75% in all categories of stars (singles, primaries, and companions) earlier than spectral type M6 in the Class II sample. Given the wealth of other information available for these stars, this has allowed us to study the impact of multiplicity with a much larger sample. While millimeter flux and disk mass are related to stellar mass as seen in previous studies, we find that both primary and secondary stars in binary systems with separations of 30–4200 au have lower values of millimeter flux as a function of stellar mass than single stars. We also find that for these systems, the circumstellar disk around the primary star does not dominate the total disk mass in the system and contains on average 62% of the total mass

    Resolved Young Binary Systems And Their Disks

    Get PDF
    We have conducted a survey of young single and multiple systems in the Taurus–Auriga star-forming region with the Atacama Large Millimeter Array (ALMA), substantially improving both the spatial resolution and sensitivity with which individual protoplanetary disks in these systems have been observed. These ALMA observations can resolve binary separations as small as 25–30 au and have an average 3σ detection level of 0.35 mJy, equivalent to a disk mass of 4 × 10−5 M ⊙ for an M3 star. Our sample was constructed from stars that have an infrared excess and/or signs of accretion and have been classified as Class II. For the binary and higher-order multiple systems observed, we detect λ = 1.3 mm continuum emission from one or more stars in all of our target systems. Combined with previous surveys of Taurus, our 21 new detections increase the fraction of millimeter-detected disks to over 75% in all categories of stars (singles, primaries, and companions) earlier than spectral type M6 in the Class II sample. Given the wealth of other information available for these stars, this has allowed us to study the impact of multiplicity with a much larger sample. While millimeter flux and disk mass are related to stellar mass as seen in previous studies, we find that both primary and secondary stars in binary systems with separations of 30–4200 au have lower values of millimeter flux as a function of stellar mass than single stars. We also find that for these systems, the circumstellar disk around the primary star does not dominate the total disk mass in the system and contains on average 62% of the total mass

    Entropy Stable Staggered Grid Spectral Collocation for the Burgers' and Compressible Navier-Stokes Equations

    Get PDF
    Staggered grid, entropy stable discontinuous spectral collocation operators of any order are developed for Burgers' and the compressible Navier-Stokes equations on unstructured hexahedral elements. This generalization of previous entropy stable spectral collocation work [1, 2], extends the applicable set of points from tensor product, Legendre-Gauss-Lobatto (LGL) to a combination of tensor product Legendre-Gauss (LG) and LGL points. The new semi-discrete operators discretely conserve mass, momentum, energy and satisfy a mathematical entropy inequality for both Burgers' and the compressible Navier-Stokes equations in three spatial dimensions. They are valid for smooth as well as discontinuous flows. The staggered LG and conventional LGL point formulations are compared on several challenging test problems. The staggered LG operators are significantly more accurate, although more costly to implement. The LG and LGL operators exhibit similar robustness, as is demonstrated using test problems known to be problematic for operators that lack a nonlinearly stability proof for the compressible Navier-Stokes equations (e.g., discontinuous Galerkin, spectral difference, or flux reconstruction operators)

    Towards an Entropy Stable Spectral Element Framework for Computational Fluid Dynamics

    Get PDF
    Entropy stable (SS) discontinuous spectral collocation formulations of any order are developed for the compressible Navier-Stokes equations on hexahedral elements. Recent progress on two complementary efforts is presented. The first effort is a generalization of previous SS spectral collocation work to extend the applicable set of points from tensor product, Legendre-Gauss-Lobatto (LGL) to tensor product Legendre-Gauss (LG) points. The LG and LGL point formulations are compared on a series of test problems. Although being more costly to implement, it is shown that the LG operators are significantly more accurate on comparable grids. Both the LGL and LG operators are of comparable efficiency and robustness, as is demonstrated using test problems for which conventional FEM techniques suffer instability. The second effort generalizes previous SS work to include the possibility of p-refinement at non-conforming interfaces. A generalization of existing entropy stability machinery is developed to accommodate the nuances of fully multi-dimensional summation-by-parts (SBP) operators. The entropy stability of the compressible Euler equations on non-conforming interfaces is demonstrated using the newly developed LG operators and multi-dimensional interface interpolation operators

    Model of ionic currents through microtubule nanopores and the lumen

    Full text link
    It has been suggested that microtubules and other cytoskeletal filaments may act as electrical transmission lines. An electrical circuit model of the microtubule is constructed incorporating features of its cylindrical structure with nanopores in its walls. This model is used to study how ionic conductance along the lumen is affected by flux through the nanopores when an external potential is applied across its two ends. Based on the results of Brownian dynamics simulations, the nanopores were found to have asymmetric inner and outer conductances, manifested as nonlinear IV curves. Our simulations indicate that a combination of this asymmetry and an internal voltage source arising from the motion of the C-terminal tails causes a net current to be pumped across the microtubule wall and propagate down the microtubule through the lumen. This effect is demonstrated to enhance and add directly to the longitudinal current through the lumen resulting from an external voltage source, and could be significant in amplifying low-intensity endogenous currents within the cellular environment or as a nano-bioelectronic device.Comment: 43 pages, 6 figures, revised versio

    Entropy Stable Spectral Collocation Schemes for the Navier-Stokes Equations: Discontinuous Interfaces

    Get PDF
    Nonlinear entropy stability and a summation-by-parts framework are used to derive provably stable, polynomial-based spectral collocation methods of arbitrary order. The new methods are closely related to discontinuous Galerkin spectral collocation methods commonly known as DGFEM, but exhibit a more general entropy stability property. Although the new schemes are applicable to a broad class of linear and nonlinear conservation laws, emphasis herein is placed on the entropy stability of the compressible Navier-Stokes equations
    • …
    corecore