10,335 research outputs found

    IUE and IRAS observations of luminous M stars with varying gas-to dust ratios

    Get PDF
    Circumstellar gas and dust surrounding M giants and supergiants show luminous M stars to split into two distinct classes. Stars with a high gas to dust ratio all show chromospheric Ca II, H, and K emission. Stars with a high dust to gas ratio do not show chromospheric Ca II emission but are the only ones to show Balmer emission indicative of atmospheric shocks and are also the only ones to show maser emission. In order to determine whether all chromospheric indicators disappear in high dust to gas ratio stars, a survey of stars in both these classes was conducted with the IUE satellite. Long wavelength infrared fluxes for the program stars were obtained from the IRAS point source catalog. There is no obvious difference in the long wavelength observations between the two groups of stars. The long wavelength excess tends to follow the 10 micron excess and not the dust to gas ratio

    Simple bonding technique for high-temperature ceramic coatings

    Get PDF
    Coatings, consisting of zirconia powder bonded with orthophosphoric acid and a small amount of hydrofluoric acid, are hard, strong, and refractory, resist thermal shock, and provide good thermal protection. After the aqueous coating is applied to a metallic surface, only a 600 deg F cure is required before service

    Spin transition in Gd3_3N@C80_{80}, detected by low-temperature on-chip SQUID technique

    Get PDF
    We present a magnetic study of the Gd3_3N@C80_{80} molecule, consisting of a Gd-trimer via a Nitrogen atom, encapsulated in a C80_{80} cage. This molecular system can be an efficient contrast agent for Magnetic Resonance Imaging (MRI) applications. We used a low-temperature technique able to detect small magnetic signals by placing the sample in the vicinity of an on-chip SQUID. The technique implemented at NHMFL has the particularity to operate in high magnetic fields of up to 7 T. The Gd3_3N@C80_{80} shows a paramagnetic behavior and we find a spin transition of the Gd3_3N structure at 1.2 K. We perform quantum mechanical simulations, which indicate that one of the Gd ions changes from a 8S7/2^8S_{7/2} state (L=0,S=7/2L=0, S=7/2) to a 7F6^7F_{6} state (L=S=3,J=6L=S=3, J=6), likely due to a charge transfer between the C80_{80} cage and the ion

    One parameter control of the size of iron oxide nanoparticles synthesized in reverse micelles

    Get PDF
    Iron oxide nanoparticles were synthesized via reverse micelle methods. The initial iron concentration was varied, while maintaining all other parameters constant, in order to investigate the effect of the iron concentration on the resultant iron oxide nanoparticle size. Increasing the iron concentration from 0.125M to 0.5M yielded an increase in average nanoparticle diameter from 4.71 to 7.95 nm, as measured by transmission electron microscopy. Three other concentrations between 0.125M and 0.5M showed corresponding size variations, all with statistical significance. Magnetic characterization by vibrating sample magnetometry and powder x-ray diffraction was performed to verify proper phase and material. Further insight into the reverse micelle method was acquired along with the ability to tune the nanoparticle size

    Physicochemical Properties and Catalytic Behavior of the Molecular Sieve SSZ-70

    Get PDF
    SSZ-70 is synthesized using 1,3-bis(isobutyl)imidazolium, 1,3-bis(cyclohexyl)imidazolium, and 1,3-bis(cycloheptyl)imidazolium structure directing agents (SDAs), and the solids obtained are characterized by powder X-ray diffraction (XRD), ^(29)Si magic angle spinning nuclear magnetic resonance (MAS NMR), electron microscopy, nitrogen and hydrocarbon adsorption, and thermogravimetric analyses. The physicochemical properties of SSZ-70 show that it is a new molecular sieve that has similarities to MWW-type materials. The catalytic behavior of SSZ-70 is evaluated through the use of the constraint index (CI) test. Distinct differences in the reactivity between Al-SSZ-70 and SSZ-25 (MWW) are observed and are the consequences of the structural differences between these two molecular sieves

    Design and evaluation of single and dual flow thrust vector nozzles with post exit vanes

    Get PDF
    This Thrust Vectored Research project required that a 1/24 scale model of the F/A-18 High Alpha Research Vehicle, (HARV), propulsion system be constructed on the university campus. This propulsion system was designed for cold flow testing on a multicomponent test rig. Forces and moments were measured to study nozzle performance parameters. The flow visualization technique of color Schlieren photography was performed to investigate the flow phenomena at the nozzle exit. The flow interactions that were identified consisted of vane nozzleing between the outer and lower vanes and vane tip interference. The thrust vectoring system consisted of three asymmetrically spaced vanes installed circumferentially on a maximum afterburner nozzle. The performance of the nozzle was investigated with the outer and lower vanes equally deflected, (-10 deg is less than delta(sub v) is less than 25 deg), and with the upper vane fully retracted, (delta(sub v) equals -10 deg). The nozzle pressure ratio ranged from 4 to 6. The results indicated that a vane nozzleing effect developed at nozzle pressure ratios of 4 and 6 when the outer and lower vanes were deflected far enough into the flow field such that the increase in vane area accelerated the flow past the vanes causing distorted shock waves. This accelerated flow was a result of a pressure differential existing between the inside surface of the vane and the ambient pressure. The stagnation pressure that developed along the inside surface of the vane accelerated the flow past the vanes causing it to equalize with ambient pressure, thus providing distorted shock waves. A tip interference was present at the trailing edge of the upper vane as a result of low nozzle pressure, NPR 4, with high vane deflection, delta(sub v) equals 25 degrees, and also with a high nozzle pressure, NPR 6, and low vane deflections, delta(sub v) equals 15 degrees

    Sequence of phase transitions induced in an array of Josephson junctions by their crossover to pi-state

    Full text link
    We show that the transition of Josephson junctions between the conventional and pi states caused by the decrease in temperature induces in a regular two-dimensional array of such junctions not just a single phase transition between two phases with different ordering but a sequence of two, three or four phase transitions. The corresponding phase diagrams are constructed for the cases of bipartite (square or honeycomb) and triangular lattices.Comment: 5 pages, v2: as published in EP

    New, efficient, and accurate high order derivative and dissipation operators satisfying summation by parts, and applications in three-dimensional multi-block evolutions

    Full text link
    We construct new, efficient, and accurate high-order finite differencing operators which satisfy summation by parts. Since these operators are not uniquely defined, we consider several optimization criteria: minimizing the bandwidth, the truncation error on the boundary points, the spectral radius, or a combination of these. We examine in detail a set of operators that are up to tenth order accurate in the interior, and we surprisingly find that a combination of these optimizations can improve the operators' spectral radius and accuracy by orders of magnitude in certain cases. We also construct high-order dissipation operators that are compatible with these new finite difference operators and which are semi-definite with respect to the appropriate summation by parts scalar product. We test the stability and accuracy of these new difference and dissipation operators by evolving a three-dimensional scalar wave equation on a spherical domain consisting of seven blocks, each discretized with a structured grid, and connected through penalty boundary conditions.Comment: 16 pages, 9 figures. The files with the coefficients for the derivative and dissipation operators can be accessed by downloading the source code for the document. The files are located in the "coeffs" subdirector

    Are inner disc misalignments common? ALMA reveals an isotropic outer disc inclination distribution for young dipper stars

    Get PDF
    Dippers are a common class of young variable star exhibiting day-long dimmings with depths of up to several tens of per cent. A standard explanation is that dippers host nearly edge-on (id ≈ 70°) protoplanetary discs that allow close-in (10 au) disc resolved by ALMA and that inner disc misalignments may be common during the protoplanetary phase. More than one mechanism may contribute to the dipper phenomenon, including accretion-driven warps and ‘broken’ discs caused by inclined (sub-)stellar or planetary companions
    • …
    corecore