155 research outputs found

    Propagation of semantic information between orthophoto and 3D replica: a H-BIM system for the north transept of Pisa Cathedral

    Get PDF
    This contribution proposes a methodological approach for the transfer of annotations between orthophotos and 3D digital heritage models, relying on a mesh-based/point-based representation. The workflow leverages on the exploitation of 2D/3D projective relations and on the identification, propagation, modelling and tiling of virtual models of architectural heritage. Referring to the significant case study of Pisa Cathedral, the method is tested to ensure an informative continuum between 2D medias and 3D representations, in terms of morphology, geometry and semantic enrichment. At first, a high resolution ortho-photo is created to support studies related to conservation and restoration, e.g. to highlight degradation patterns and materials as well as to distinguish cracks, frescoed surfaces, decorations. Then, the information is translated from the 2D support to a virtual 3D mockup: this step is essential to ensure a complete understanding of the architectural heritage object, that can thus be studied in its entirety, considering its morphological complexities. The proposed approach provides a more effective system for the transfer and exchange of semantic information from high-resolution orthophotos to semantically rich 3D models, that can be fundamental even in view of the construction of Heritage-Building Information Modeling (H-BIM) environments

    ACCURACY ASSESSMENT IN STRUCTURE FROM MOTION 3D RECONSTRUCTION FROM UAV-BORN IMAGES: THE INFLUENCE OF THE DATA PROCESSING METHODS

    Get PDF
    The evolution of Structure from Motion (SfM) techniques and their integration with the established procedures of classic stereoscopic photogrammetric survey have provided a very effective tool for the production of three-dimensional textured models. Such models are not only aesthetically pleasing but can also contain metric information, the quality of which depends on both survey type and applied processing methodologies. An open research topic in this area refers to checking attainable accuracy levels. The knowledge of such accuracy is essential, especially in the integration of models obtained through SfM with other models derived from different sensors or methods (laser scanning, classic photogrammetry ...). Accuracy checks may be conducted by either comparing SfM models against a reference one or measuring the deviation of control points identified on models and measured with classic topographic instrumentation and methodologies. This paper presents an analysis of attainable accuracy levels, according to different approaches of survey and data processing. For this purpose, a survey of the Church of San Miniato in Marcianella (Pisa, Italy), has been used. The dataset is an integration of laser scanning with terrestrial and UAV-borne photogrammetric surveys; in addition, a high precision topographic network was established for the specific purpose. In particular, laser scanning has been used for the interior and the exterior of the church, with the exclusion of the roof, while UAVs have been used for the photogrammetric survey of both roof, with horizontal strips, and façade, with vertical strips

    INDOOR PHOTOGRAMMETRY USING UAVS WITH PROTECTIVE STRUCTURES: ISSUES AND PRECISION TESTS

    Get PDF
    Abstract. Management of disaster scenarios requires applying emergency procedures ensuring maximum safety and protection for field operators. Actual conditions of disaster sites are labelled as "Triple-D: Dull, Dusty, Dangerous" areas. It is well known that in this kind of areas and situations remote surveying systems are at their very best effective, and among these UAVs currently are an effective and performing field tool. Indoor spaces are a particularly complex scenario for this kind of surveys. In this case, technological advances currently offer micro-UAV systems, featuring 360° protective cages, which are able to collect video streams while flying in very tight spaces. Such cases require manual control of the vehicle, with the operator piloting the aircraft without prior knowledge of the status quo of the survey object and therefore without prior planning of flight paths. A possible benefit in terms of knowledge of the survey object could lay in the creation of a 3D model based on images extracted by video streams; to date, widely tested methods and techniques are available for processing UAV-borne video streams to obtain such models. Anyway, the protective cage and the need to use, in these operating conditions, wide-angle lenses presents some issues linked to ever-changing image framing, due to the presence of the cage wires on the field of view. The present work focused on this issue. Using this type of UAVs, video streams have been collected in different environments, both indoors and outdoors, testing several procedures for photogrammetric processing in order to assess the ability to create 3D models. These have been tested for reliability based on data collection conditions, also assessing the level of automation and speed attainable in post-processing. The present paper describes the different tests carried out and the related results.</p

    CONNECTING GEOMETRY AND SEMANTICS VIA ARTIFICIAL INTELLIGENCE: FROM 3D CLASSIFICATION OF HERITAGE DATA TO H-BIM REPRESENTATIONS

    Get PDF
    Cultural heritage information systems, such as H-BIM, are becoming more and more widespread today, thanks to their potential to bring together, around a 3D representation, the wealth of knowledge related to a given object of study. However, the reconstruction of such tools starting from 3D architectural surveying is still largely deemed as a lengthy and time-consuming process, with inherent complexities related to managing and interpreting unstructured and unorganized data derived, e.g., from laser scanning or photogrammetry. Tackling this issue and starting from reality-based surveying, the purpose of this paper is to semi-automatically reconstruct parametric representations for H-BIM-related uses, by means of the most recent 3D data classification techniques that exploit Artificial Intelligence (AI). The presented methodology consists of a first semantic segmentation phase, aiming at the automatic recognition through AI of architectural elements of historic buildings within points clouds; a Random Forest classifier is used for the classification task, evaluating each time the performance of the predictive model. At a second stage, visual programming techniques are applied to the reconstruction of a conceptual mock-up of each detected element and to the subsequent propagation of the 3D information to other objects with similar characteristics. The resulting parametric model can be used for heritage preservation and dissemination purposes, as common practices implemented in modern H-BIM documentation systems. The methodology is tailored to representative case studies related to the typology of the medieval cloister and scattered over the Tuscan territory

    Negative symptoms as key features of depression among cannabis users: a preliminary report.

    Get PDF
    OBJECTIVE: Cannabis use is frequent among depressed patients and may lead to the so-called "amotivational syndrome", which combines symptoms of affective flattening and loss of emotional reactivity (i.e. the so-called "negative" symptomatology). The aim of this study was to investigate the negative symptomatology in depressed patients with concomitant cannabis use disorders (CUDs) in comparison with depressed patients without CUDs. PATIENTS AND METHODS: Fifty-one patients with a diagnosis of Major Depressive Disorder (MDD) and concomitant CUD and fifty-one MDD patients were enrolled in the study. The 21-Item Hamilton Depression Rating Scale (HDRS) and the negative symptoms subscales of the Positive and Negative Syndrome Scale (PANSS) were used to assess depressive and negative symptomatology. RESULTS: Patients with cannabis use disorders presented significantly more severe negative symptoms in comparison with patients without cannabis use (15.18 ± 2.25 vs 13.75 ± 2.44; t100 = 3.25 p = 0.002). DISCUSSION: A deeper knowledge of the "negative" psychopathological profile of MDD patients who use cannabis may lead to novel etiopathogenetic models of MDD and to more appropriate treatment approaches

    3-DIMENSIONAL GEOMETRIC SURVEY AND STRUCTURAL MODELLING OF THE DOME OF PISA CATHEDRAL

    Get PDF
    This paper aims to illustrate the preliminary results of a research project on the dome of Pisa Cathedral (Italy). The final objective of the present research is to achieve a deep understanding of the structural behaviour of the dome, through a detailed knowledge of its geometry and constituent materials, and by taking into account historical and architectural aspects as well. A reliable survey of the dome is the essential starting point for any further investigation and adequate structural modelling. Examination of the status quo on the surveys of the Cathedral dome shows that a detailed survey suitable for structural analysis is in fact lacking. For this reason, high-density and high-precision surveys have been planned, by considering that a different survey output is needed, according both to the type of structural model chosen and purposes to be achieved. Thus, both range-based (laser scanning) and image-based (3D Photogrammetry) survey methodologies have been used. This contribution introduces the first results concerning the shape of the dome derived from surveys. Furthermore, a comparison is made between such survey outputs and those available in the literature

    Computational vision in UV-Mapping of textured meshes coming from photogrammetric recovery: Unwrapping frescoed vaults

    Get PDF
    Sometimes it is difficult to represent "on paper" the existing reality of architectonic elements, depending on the complexity of his geometry, but not only in cases with complex geometries: non-relief surfaces, can need a "special planar format" for its graphical representation. Nowadays, there are a lot of methods to obtain tridimensional recovery of our Cultural Heritage with different ranges of the relationship accuracy / costs, even getting high accuracy using "low-cost" recovery methods as digital photogrammetry, which allow us easily to obtain a graphical representation "on paper": ortho-images of different points of view. This can be useful for many purposes but, for others, an orthographic projection is not really very interesting. In non-site restoration tasks of frescoed vaults, a "planar format" representation in needed to see in true magnitude the paintings represented on the intrados vault, because of the general methodology used: gluing the fresco on a fabric, removing the fresco-fabric from the support, moving to laboratory, removing the fresco from the fabric, restoring the fresco, gluing back the restored fresco on another fabric, laying the restored fresco on the original location and removing the fabric. Because of this, many times, an unfolded model is needed, in a similar way a cylinder or cone can be unfolded, but in this case with a texture included: UV unwrapping. Unfold and fold-back processes, can be especially interesting in restoration field of frescoed vaults and domes at: chromatic recovery of paintings, reconstruction of partially missed geometries, transference of paintings on surfaces, etc

    Semantic annotations on heritage models: 2D/3D approaches and future research challenges

    Get PDF
    Research in the field of Cultural Heritage is increasingly moving towards the creation of digital information systems, in which the geometric representation of an artifact is linked to some external information, through meaningful tags. The process of attributing additional and structured information to various elements in a given digital model is customarily identified with the term semantic annotation; the added contextual information is associated, for instance, to analysis and conservation terms. Starting from the existing literature, aim of this work is to discuss how semantic annotations are used, in digital architectural heritage models, to link the geometrical representation of an artefact with knowledge-related information. Most consolidated methods -such as traditional mapping on 2D media, are compared with more recent approaches making the most of 3D representation. Reference is made, in particular, to Heritage-BIM techniques and to collaborative reality-based platforms, such as Aïoli (http://aioli.cloud). Potentialities and limits of the different solutions proposed in literature are critically discussed, also addressing future research challenges in Cultural Heritage application fields

    From the semantic point cloud to heritage-building information modeling: A semiautomatic approach exploiting machine learning

    Get PDF
    This work presents a semi-automatic approach to the 3D reconstruction of Heritage-Building Information Models from point clouds based on machine learning techniques. The use of digital information systems leveraging on three-dimensional (3D) representations in architectural heritage documentation and analysis is ever increasing. For the creation of such repositories, reality-based surveying techniques, such as photogrammetry and laser scanning, allow the fast collection of reliable digital replicas of the study objects in the form of point clouds. Besides, their output is raw and unstructured, and the transition to intelligible and semantic 3D representations is still a scarcely automated and time-consuming process requiring considerable human intervention. More refined methods for 3D data interpretation of heritage point clouds are therefore sought after. In tackling these issues, the proposed approach relies on (i) the application of machine learning techniques to semantically label 3D heritage data by identification of relevant geometric, radiometric and intensity features, and (ii) the use of the annotated data to streamline the construction of Heritage-Building Information Modeling (H-BIM) systems, where purely geometric information derived from surveying is associated with semantic descriptors on heritage documentation and management. The “Grand-Ducal Cloister” dataset, related to the emblematic case study of the Pisa Charterhouse, is discussed
    corecore