30 research outputs found

    Sodium Ascorbate induces apoptosis in neuroblastoma cell lines by interfering with iron uptake

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroblastoma (NB) is an extra-cranial solid tumour of childhood. In spite of the good clinical response to first-line therapy, complete eradication of NB cells is rarely achieved. Thus, new therapeutic strategies are needed to eradicate surviving NB cells and prevent relapse. Sodium ascorbate has been recently reported to induce apoptosis of B16 melanoma cells through down-regulation of the transferrin receptor, CD71. Since NB and melanoma share the same embryologic neuroectodermal origin, we used different human NB cell lines to assess whether the same findings occurred.</p> <p>Results</p> <p>We could observe dose- and time-dependent induction of apoptosis in all NB cell lines. Sodium ascorbate decreased the expression of CD71 and caused cell death within 24 h. An increase in the global and specific caspase activity took place, as well as an early loss of the mitochondrial transmembrane potential. Moreover, intracellular iron was significantly decreased after exposure to sodium ascorbate. Apoptotic markers were reverted when the cells were pretreated with the iron donor ferric ammonium citrate (FAC), further confirming that iron depletion is responsible for the ascorbate-induced cell death in NB cells.</p> <p>Conclusion</p> <p>Sodium ascorbate is highly toxic to neuroblastoma cell lines and the specific mechanism of vitamin C-induced apoptosis is due to a perturbation of intracellular iron levels ensuing TfR-downregulation.</p

    Immune Checkpoints and Innovative Therapies in Glioblastoma

    Get PDF
    Targeting the Immune Checkpoint molecules (ICs; CTLA-4, PD-1, PD-L1/2, and others) which provide inhibitory signals to T cells, dramatically improves survival in hard-to-treat tumors. The establishment of an immunosuppressive environment prevents endogenous immune response in glioblastoma; therefore, manipulating the host immune system seems a reasonable strategy also for this tumor. In glioma patients the accumulation of CD4+/CD8+ T cells and Treg expressing high levels of CTLA-4 and PD-1, or the high expression of PD-L1 in glioma cells correlates with WHO high grade and short survival. Few clinical studies with IC inhibitors (ICis) were completed so far. Notably, the first large-scale randomized trial (NCT 02017717) that compared PD-1 blockade and anti-VEGF, did not show an OS increase in the patients treated with anti-PD-1. Several factors could have contributed to the failure of this trial and must be considered to design further clinical studies. In particular the possibility of targeting at the same time different ICs was pre-clinically tested in an animal model were inhibitors against IDO, CTLA-4 and PD-L1 were combined and showed persistent and significant antitumor effects in glioma-bearing mice. It is reasonable to hypothesize that the immunological characterization of the tumor in terms of type and level of expressed IC molecules on the tumor and TIL may be useful to design the optimal ICi combination for a given subset of tumor to overcome the immunosuppressive milieu of glioblastoma and to efficiently target a tumor with such high cellular complexity

    Erratum to: Analysis of in vitro ADCC and clinical response to trastuzumab: possible relevance of Fc\u3b3RIIIA/Fc\u3b3RIIA gene polymorphisms and HER-2 expression levels on breast cancer cell lines

    Get PDF
    BACKGROUND: Trastuzumab is a humanized monoclonal antibody (mAb) currently used for the treatment of breast cancer (BC) patients with HER-2 overexpressing tumor subtype. Previous data reported the involvement of FcγRIIIA/IIA gene polymorphisms and/or antibody-dependent cellular cytotoxicity (ADCC) in the therapeutic efficacy of trastuzumab, although results on these issues are still controversial. This study was aimed to evaluate in vitro the functional relationships among FcγRIIIA/IIA polymorphisms, ADCC intensity and HER-2 expression on tumor target cells and to correlate them with response to trastuzumab. PATIENTS AND METHODS: Twenty-five patients with HER-2 overexpressing BC, receiving trastuzumab in a neoadjuvant (NEO) or metastatic (MTS) setting, were genotyped for the FcγRIIIA 158V>F and FcγRIIA 131H>R polymorphisms by a newly developed pyrosequencing assay and by multiplex Tetra-primer-ARMS PCR, respectively. Trastuzumab-mediated ADCC of patients’ peripheral blood mononuclear cells (PBMCs) was evaluated prior to therapy and measured by (51)Chromium release using as targets three human BC cell lines showing different levels of reactivity with trastuzumab. RESULTS: We found that the FcγRIIIA 158F and/or the FcγRIIA 131R variants, commonly reported as unfavorable in BC, may actually behave as ADCC favorable genotypes, in both the NEO (P ranging from 0.009 to 0.039 and from 0.007 to 0.047, respectively) and MTS (P ranging from 0.009 to 0.032 and P = 0.034, respectively) patients. The ADCC intensity was affected by different levels of trastuzumab reactivity with BC target cells. In this context, the MCF-7 cell line, showing the lowest reactivity with trastuzumab, resulted the most suitable cell line for evaluating ADCC and response to trastuzumab. Indeed, we found a statistically significant correlation between an increased frequency of patients showing ADCC of MCF-7 and complete response to trastuzumab in the NEO setting (P = 0.006). CONCLUSIONS: Although this study was performed in a limited number of patients, it would indicate a correlation of FcγR gene polymorphisms to the ADCC extent in combination with the HER-2 expression levels on tumor target cells in BC patients. However, to confirm our findings further experimental evidences obtained from a larger cohort of BC patients are mandatory. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12967-015-0680-0) contains supplementary material, which is available to authorized users

    In vitro

    No full text

    Sodium Ascorbate induces apoptosis in neuroblastoma cell lines by interfering with iron uptake-2

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Sodium Ascorbate induces apoptosis in neuroblastoma cell lines by interfering with iron uptake"</p><p>http://www.molecular-cancer.com/content/6/1/55</p><p>Molecular Cancer 2007;6():55-55.</p><p>Published online 30 Aug 2007</p><p>PMCID:PMC2000471.</p><p></p> for 24 hours and iron levels were measured in cell lysates. After terminating the incubation, cells were collected by scraping and washed three times with PBS and then lysed in specific buffer. Iron levels were analyzed with a Cobas Integra 800 system as described under "Material and Method". Values indicated are the mean ± S.D. of three separate experiments

    Sodium Ascorbate induces apoptosis in neuroblastoma cell lines by interfering with iron uptake-4

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Sodium Ascorbate induces apoptosis in neuroblastoma cell lines by interfering with iron uptake"</p><p>http://www.molecular-cancer.com/content/6/1/55</p><p>Molecular Cancer 2007;6():55-55.</p><p>Published online 30 Aug 2007</p><p>PMCID:PMC2000471.</p><p></p>of sodium ascorbate (in the presence or absence of FAC 70 μg/ml). After 16 hours, cells detached in the medium were collected by centrifugation, resuspended and incubated with AnnexinV-FITC. Apoptosis was quantified as increased green fluorescence by flow cytometry. The data are the mean ± S.D. from four independent experiments. Statistical analysis was done by Student's test (*, p < 0.005)
    corecore