2,672 research outputs found
Multi-Regge kinematics and the moduli space of Riemann spheres with marked points
We show that scattering amplitudes in planar N = 4 Super Yang-Mills in
multi-Regge kinematics can naturally be expressed in terms of single-valued
iterated integrals on the moduli space of Riemann spheres with marked points.
As a consequence, scattering amplitudes in this limit can be expressed as
convolutions that can easily be computed using Stokes' theorem. We apply this
framework to MHV amplitudes to leading-logarithmic accuracy (LLA), and we prove
that at L loops all MHV amplitudes are determined by amplitudes with up to L +
4 external legs. We also investigate non-MHV amplitudes, and we show that they
can be obtained by convoluting the MHV results with a certain helicity flip
kernel. We classify all leading singularities that appear at LLA in the Regge
limit for arbitrary helicity configurations and any number of external legs.
Finally, we use our new framework to obtain explicit analytic results at LLA
for all MHV amplitudes up to five loops and all non-MHV amplitudes with up to
eight external legs and four loops.Comment: 104 pages, six awesome figures and ancillary files containing the
results in Mathematica forma
Spinor Helicity and Dual Conformal Symmetry in Ten Dimensions
The spinor helicity formalism in four dimensions has become a very useful
tool both for understanding the structure of amplitudes and also for practical
numerical computation of amplitudes. Recently, there has been some discussion
of an extension of this formalism to higher dimensions. We describe a
particular implementation of the spinor-helicity method in ten dimensions.
Using this tool, we study the tree-level S-matrix of ten dimensional super
Yang-Mills theory, and prove that the theory enjoys a dual conformal symmetry.
Implications for four-dimensional computations are discussed.Comment: 24 pages, 1 figure
Collinear and Soft Limits of Multi-Loop Integrands in N=4 Yang-Mills
It has been argued in arXiv:1112.6432 that the planar four-point integrand in
N=4 super Yang-Mills theory is uniquely determined by dual conformal invariance
together with the absence of a double pole in the integrand of the logarithm in
the limit as a loop integration variable becomes collinear with an external
momentum. In this paper we reformulate this condition in a simple way in terms
of the amplitude itself, rather than its logarithm, and verify that it holds
for two- and three-loop MHV integrands for n>4. We investigate the extent to
which this collinear constraint and a constraint on the soft behavior of
integrands can be used to determine integrands. We find an interesting
complementarity whereby the soft constraint becomes stronger while the
collinear constraint becomes weaker at larger n. For certain reasonable choices
of basis at two and three loops the two constraints in unison appear strong
enough to determine MHV integrands uniquely for all n.Comment: 27 pages, 14 figures; v2: very minor change
The All-Loop Integrand For Scattering Amplitudes in Planar N=4 SYM
We give an explicit recursive formula for the all L-loop integrand for
scattering amplitudes in N=4 SYM in the planar limit, manifesting the full
Yangian symmetry of the theory. This generalizes the BCFW recursion relation
for tree amplitudes to all loop orders, and extends the Grassmannian duality
for leading singularities to the full amplitude. It also provides a new
physical picture for the meaning of loops, associated with canonical operations
for removing particles in a Yangian-invariant way. Loop amplitudes arise from
the "entangled" removal of pairs of particles, and are naturally presented as
an integral over lines in momentum-twistor space. As expected from manifest
Yangian-invariance, the integrand is given as a sum over non-local terms,
rather than the familiar decomposition in terms of local scalar integrals with
rational coefficients. Knowing the integrands explicitly, it is straightforward
to express them in local forms if desired; this turns out to be done most
naturally using a novel basis of chiral, tensor integrals written in
momentum-twistor space, each of which has unit leading singularities. As simple
illustrative examples, we present a number of new multi-loop results written in
local form, including the 6- and 7-point 2-loop NMHV amplitudes. Very concise
expressions are presented for all 2-loop MHV amplitudes, as well as the 5-point
3-loop MHV amplitude. The structure of the loop integrand strongly suggests
that the integrals yielding the physical amplitudes are "simple", and
determined by IR-anomalies. We briefly comment on extending these ideas to more
general planar theories.Comment: 46 pages; v2: minor changes, references adde
Differential equations for multi-loop integrals and two-dimensional kinematics
In this paper we consider multi-loop integrals appearing in MHV scattering
amplitudes of planar N=4 SYM. Through particular differential operators which
reduce the loop order by one, we present explicit equations for the two-loop
eight-point finite diagrams which relate them to massive hexagons. After the
reduction to two-dimensional kinematics, we solve them using symbol technology.
The terms invisible to the symbols are found through boundary conditions coming
from double soft limits. These equations are valid at all-loop order for double
pentaladders and allow to solve iteratively loop integrals given lower-loop
information. Comments are made about multi-leg and multi-loop integrals which
can appear in this special kinematics. The main motivation of this
investigation is to get a deeper understanding of these tools in this
configuration, as well as for their application in general four-dimensional
kinematics and to less supersymmetric theories.Comment: 25 pages, 7 figure
Position Automaton Construction for Regular Expressions with Intersection
Positions and derivatives are two essential notions in the conversion methods from regular expressions to equivalent finite automata. Partial derivative based methods have recently been extended to regular expressions with intersection. In this paper, we present a position automaton construction for those expressions. This construction generalizes the notion of position making it compatible with intersection. The resulting automaton is homogeneous and has the partial derivative automaton as its quotient
On the State Complexity of Partial Derivative Automata For Regular Expressions with Intersection
Extended regular expressions (with complement and intersection) are used in many applications due to their succinctness. In particular, regular expressions extended with intersection only (also called semi-extended) can already be exponentially smaller than standard regular expressions or equivalent nondeterministic finite automata (NFA). For practical purposes it is important to study the average behaviour of conversions between these models. In this paper, we focus on the conversion of regular expressions with intersection to nondeterministic finite automata, using partial derivatives and the notion of support. First, we give a tight upper bound of 2O(n) for the worst-case number of states of the resulting partial derivative automaton, where n is the size of the expression. Using the framework of analytic combinatorics, we then establish an upper bound of (1.056 + o(1))n for its asymptotic average-state complexity, which is significantly smaller than the one for the worst case. (c) IFIP International Federation for Information Processing 2016
Yangian symmetry of light-like Wilson loops
We show that a certain class of light-like Wilson loops exhibits a Yangian
symmetry at one loop, or equivalently, in an Abelian theory. The Wilson loops
we discuss are equivalent to one-loop MHV amplitudes in N=4 super Yang-Mills
theory in a certain kinematical regime. The fact that we find a Yangian
symmetry constraining their functional form can be thought of as the effect of
the original conformal symmetry associated to the scattering amplitudes in the
N=4 theory.Comment: 15 pages, 5 figure
Single-valued harmonic polylogarithms and the multi-Regge limit
We argue that the natural functions for describing the multi-Regge limit of
six-gluon scattering in planar N=4 super Yang-Mills theory are the
single-valued harmonic polylogarithmic functions introduced by Brown. These
functions depend on a single complex variable and its conjugate, (w,w*). Using
these functions, and formulas due to Fadin, Lipatov and Prygarin, we determine
the six-gluon MHV remainder function in the leading-logarithmic approximation
(LLA) in this limit through ten loops, and the next-to-LLA (NLLA) terms through
nine loops. In separate work, we have determined the symbol of the four-loop
remainder function for general kinematics, up to 113 constants. Taking its
multi-Regge limit and matching to our four-loop LLA and NLLA results, we fix
all but one of the constants that survive in this limit. The multi-Regge limit
factorizes in the variables (\nu,n) which are related to (w,w*) by a
Fourier-Mellin transform. We can transform the single-valued harmonic
polylogarithms to functions of (\nu,n) that incorporate harmonic sums,
systematically through transcendental weight six. Combining this information
with the four-loop results, we determine the eigenvalues of the BFKL kernel in
the adjoint representation to NNLLA accuracy, and the MHV product of impact
factors to NNNLLA accuracy, up to constants representing beyond-the-symbol
terms and the one symbol-level constant. Remarkably, only derivatives of the
polygamma function enter these results. Finally, the LLA approximation to the
six-gluon NMHV amplitude is evaluated through ten loops.Comment: 71 pages, 2 figures, plus 10 ancillary files containing analytic
expressions in Mathematica format. V2: Typos corrected and references added.
V3: Typos corrected; assumption about single-Reggeon exchange made explici
The momentum analyticity of two-point correlators from perturbation theory and AdS/CFT
The momentum plane analyticity of two point function of a relativistic
thermal field theory at zero chemical potential is explored. A general
principle regarding the location of the singularities is extracted. In the case
of the N=4 supersymmetric Yang-Mills theory at large , a qualitative
change in the nature of the singularity (branch points versus simple poles)
from the weak coupling regime to the strong coupling regime is observed with
the aid of the AdS/CFT correspondence.Comment: 18 pages, 3 figures, typos fixed, 1 figure update
- …
