2,672 research outputs found

    Multi-Regge kinematics and the moduli space of Riemann spheres with marked points

    Get PDF
    We show that scattering amplitudes in planar N = 4 Super Yang-Mills in multi-Regge kinematics can naturally be expressed in terms of single-valued iterated integrals on the moduli space of Riemann spheres with marked points. As a consequence, scattering amplitudes in this limit can be expressed as convolutions that can easily be computed using Stokes' theorem. We apply this framework to MHV amplitudes to leading-logarithmic accuracy (LLA), and we prove that at L loops all MHV amplitudes are determined by amplitudes with up to L + 4 external legs. We also investigate non-MHV amplitudes, and we show that they can be obtained by convoluting the MHV results with a certain helicity flip kernel. We classify all leading singularities that appear at LLA in the Regge limit for arbitrary helicity configurations and any number of external legs. Finally, we use our new framework to obtain explicit analytic results at LLA for all MHV amplitudes up to five loops and all non-MHV amplitudes with up to eight external legs and four loops.Comment: 104 pages, six awesome figures and ancillary files containing the results in Mathematica forma

    Spinor Helicity and Dual Conformal Symmetry in Ten Dimensions

    Full text link
    The spinor helicity formalism in four dimensions has become a very useful tool both for understanding the structure of amplitudes and also for practical numerical computation of amplitudes. Recently, there has been some discussion of an extension of this formalism to higher dimensions. We describe a particular implementation of the spinor-helicity method in ten dimensions. Using this tool, we study the tree-level S-matrix of ten dimensional super Yang-Mills theory, and prove that the theory enjoys a dual conformal symmetry. Implications for four-dimensional computations are discussed.Comment: 24 pages, 1 figure

    Collinear and Soft Limits of Multi-Loop Integrands in N=4 Yang-Mills

    Full text link
    It has been argued in arXiv:1112.6432 that the planar four-point integrand in N=4 super Yang-Mills theory is uniquely determined by dual conformal invariance together with the absence of a double pole in the integrand of the logarithm in the limit as a loop integration variable becomes collinear with an external momentum. In this paper we reformulate this condition in a simple way in terms of the amplitude itself, rather than its logarithm, and verify that it holds for two- and three-loop MHV integrands for n>4. We investigate the extent to which this collinear constraint and a constraint on the soft behavior of integrands can be used to determine integrands. We find an interesting complementarity whereby the soft constraint becomes stronger while the collinear constraint becomes weaker at larger n. For certain reasonable choices of basis at two and three loops the two constraints in unison appear strong enough to determine MHV integrands uniquely for all n.Comment: 27 pages, 14 figures; v2: very minor change

    The All-Loop Integrand For Scattering Amplitudes in Planar N=4 SYM

    Full text link
    We give an explicit recursive formula for the all L-loop integrand for scattering amplitudes in N=4 SYM in the planar limit, manifesting the full Yangian symmetry of the theory. This generalizes the BCFW recursion relation for tree amplitudes to all loop orders, and extends the Grassmannian duality for leading singularities to the full amplitude. It also provides a new physical picture for the meaning of loops, associated with canonical operations for removing particles in a Yangian-invariant way. Loop amplitudes arise from the "entangled" removal of pairs of particles, and are naturally presented as an integral over lines in momentum-twistor space. As expected from manifest Yangian-invariance, the integrand is given as a sum over non-local terms, rather than the familiar decomposition in terms of local scalar integrals with rational coefficients. Knowing the integrands explicitly, it is straightforward to express them in local forms if desired; this turns out to be done most naturally using a novel basis of chiral, tensor integrals written in momentum-twistor space, each of which has unit leading singularities. As simple illustrative examples, we present a number of new multi-loop results written in local form, including the 6- and 7-point 2-loop NMHV amplitudes. Very concise expressions are presented for all 2-loop MHV amplitudes, as well as the 5-point 3-loop MHV amplitude. The structure of the loop integrand strongly suggests that the integrals yielding the physical amplitudes are "simple", and determined by IR-anomalies. We briefly comment on extending these ideas to more general planar theories.Comment: 46 pages; v2: minor changes, references adde

    Differential equations for multi-loop integrals and two-dimensional kinematics

    Full text link
    In this paper we consider multi-loop integrals appearing in MHV scattering amplitudes of planar N=4 SYM. Through particular differential operators which reduce the loop order by one, we present explicit equations for the two-loop eight-point finite diagrams which relate them to massive hexagons. After the reduction to two-dimensional kinematics, we solve them using symbol technology. The terms invisible to the symbols are found through boundary conditions coming from double soft limits. These equations are valid at all-loop order for double pentaladders and allow to solve iteratively loop integrals given lower-loop information. Comments are made about multi-leg and multi-loop integrals which can appear in this special kinematics. The main motivation of this investigation is to get a deeper understanding of these tools in this configuration, as well as for their application in general four-dimensional kinematics and to less supersymmetric theories.Comment: 25 pages, 7 figure

    Position Automaton Construction for Regular Expressions with Intersection

    Get PDF
    Positions and derivatives are two essential notions in the conversion methods from regular expressions to equivalent finite automata. Partial derivative based methods have recently been extended to regular expressions with intersection. In this paper, we present a position automaton construction for those expressions. This construction generalizes the notion of position making it compatible with intersection. The resulting automaton is homogeneous and has the partial derivative automaton as its quotient

    On the State Complexity of Partial Derivative Automata For Regular Expressions with Intersection

    Get PDF
    Extended regular expressions (with complement and intersection) are used in many applications due to their succinctness. In particular, regular expressions extended with intersection only (also called semi-extended) can already be exponentially smaller than standard regular expressions or equivalent nondeterministic finite automata (NFA). For practical purposes it is important to study the average behaviour of conversions between these models. In this paper, we focus on the conversion of regular expressions with intersection to nondeterministic finite automata, using partial derivatives and the notion of support. First, we give a tight upper bound of 2O(n) for the worst-case number of states of the resulting partial derivative automaton, where n is the size of the expression. Using the framework of analytic combinatorics, we then establish an upper bound of (1.056 + o(1))n for its asymptotic average-state complexity, which is significantly smaller than the one for the worst case. (c) IFIP International Federation for Information Processing 2016

    Yangian symmetry of light-like Wilson loops

    Get PDF
    We show that a certain class of light-like Wilson loops exhibits a Yangian symmetry at one loop, or equivalently, in an Abelian theory. The Wilson loops we discuss are equivalent to one-loop MHV amplitudes in N=4 super Yang-Mills theory in a certain kinematical regime. The fact that we find a Yangian symmetry constraining their functional form can be thought of as the effect of the original conformal symmetry associated to the scattering amplitudes in the N=4 theory.Comment: 15 pages, 5 figure

    Single-valued harmonic polylogarithms and the multi-Regge limit

    Get PDF
    We argue that the natural functions for describing the multi-Regge limit of six-gluon scattering in planar N=4 super Yang-Mills theory are the single-valued harmonic polylogarithmic functions introduced by Brown. These functions depend on a single complex variable and its conjugate, (w,w*). Using these functions, and formulas due to Fadin, Lipatov and Prygarin, we determine the six-gluon MHV remainder function in the leading-logarithmic approximation (LLA) in this limit through ten loops, and the next-to-LLA (NLLA) terms through nine loops. In separate work, we have determined the symbol of the four-loop remainder function for general kinematics, up to 113 constants. Taking its multi-Regge limit and matching to our four-loop LLA and NLLA results, we fix all but one of the constants that survive in this limit. The multi-Regge limit factorizes in the variables (\nu,n) which are related to (w,w*) by a Fourier-Mellin transform. We can transform the single-valued harmonic polylogarithms to functions of (\nu,n) that incorporate harmonic sums, systematically through transcendental weight six. Combining this information with the four-loop results, we determine the eigenvalues of the BFKL kernel in the adjoint representation to NNLLA accuracy, and the MHV product of impact factors to NNNLLA accuracy, up to constants representing beyond-the-symbol terms and the one symbol-level constant. Remarkably, only derivatives of the polygamma function enter these results. Finally, the LLA approximation to the six-gluon NMHV amplitude is evaluated through ten loops.Comment: 71 pages, 2 figures, plus 10 ancillary files containing analytic expressions in Mathematica format. V2: Typos corrected and references added. V3: Typos corrected; assumption about single-Reggeon exchange made explici

    The momentum analyticity of two-point correlators from perturbation theory and AdS/CFT

    Full text link
    The momentum plane analyticity of two point function of a relativistic thermal field theory at zero chemical potential is explored. A general principle regarding the location of the singularities is extracted. In the case of the N=4 supersymmetric Yang-Mills theory at large NcN_c, a qualitative change in the nature of the singularity (branch points versus simple poles) from the weak coupling regime to the strong coupling regime is observed with the aid of the AdS/CFT correspondence.Comment: 18 pages, 3 figures, typos fixed, 1 figure update
    corecore