It has been argued in arXiv:1112.6432 that the planar four-point integrand in
N=4 super Yang-Mills theory is uniquely determined by dual conformal invariance
together with the absence of a double pole in the integrand of the logarithm in
the limit as a loop integration variable becomes collinear with an external
momentum. In this paper we reformulate this condition in a simple way in terms
of the amplitude itself, rather than its logarithm, and verify that it holds
for two- and three-loop MHV integrands for n>4. We investigate the extent to
which this collinear constraint and a constraint on the soft behavior of
integrands can be used to determine integrands. We find an interesting
complementarity whereby the soft constraint becomes stronger while the
collinear constraint becomes weaker at larger n. For certain reasonable choices
of basis at two and three loops the two constraints in unison appear strong
enough to determine MHV integrands uniquely for all n.Comment: 27 pages, 14 figures; v2: very minor change