819 research outputs found

    Two-Sided Derivatives for Regular Expressions and for Hairpin Expressions

    Full text link
    The aim of this paper is to design the polynomial construction of a finite recognizer for hairpin completions of regular languages. This is achieved by considering completions as new expression operators and by applying derivation techniques to the associated extended expressions called hairpin expressions. More precisely, we extend partial derivation of regular expressions to two-sided partial derivation of hairpin expressions and we show how to deduce a recognizer for a hairpin expression from its two-sided derived term automaton, providing an alternative proof of the fact that hairpin completions of regular languages are linear context-free.Comment: 28 page

    Heavy Quark Thermalization in Classical Lattice Gauge Theory: Lessons for Strongly-Coupled QCD

    Full text link
    Thermalization of a heavy quark near rest is controlled by the correlator of two electric fields along a temporal Wilson line. We address this correlator within real-time, classical lattice Yang-Mills theory, and elaborate on the analogies that exist with the dynamics of hot QCD. In the weak-coupling limit, it can be shown analytically that the dynamics on the two sides are closely related to each other. For intermediate couplings, we carry out non-perturbative simulations within the classical theory, showing that the leading term in the weak-coupling expansion significantly underestimates the heavy quark thermalization rate. Our analytic and numerical results also yield a general understanding concerning the overall shape of the spectral function corresponding to the electric field correlator, which may be helpful in subsequent efforts to reconstruct it from Euclidean lattice Monte Carlo simulations.Comment: 22 pages. v2: a reference and clarifications added; published versio

    Hard thermal loops and the entropy of supersymmetric Yang-Mills theories

    Get PDF
    We apply the previously proposed scheme of approximately self-consistent hard-thermal-loop resummations in the entropy of high-temperature QCD to N=4 supersymmetric Yang-Mills (SYM) theories and compare with a (uniquely determined) R[4,4] Pad\'e approximant that interpolates accurately between the known perturbative result and the next-to-leading order strong-coupling result obtained from AdS/CFT correspondence. We find good agreement up to couplings where the entropy has dropped to about 85% of the Stefan-Boltzmann value. This is precisely the regime which in purely gluonic QCD corresponds to temperatures above 2.5 times the deconfinement temperature and for which this method of hard-thermal-loop resummation has given similar good agreement with lattice QCD results. This suggests that in this regime the entropy of both QCD and N=4 SYM is dominated by effectively weakly coupled hard-thermal-loop quasiparticle degrees of freedom. In N=4 SYM, strong-coupling contributions to the thermodynamic potential take over when the entropy drops below 85% of the Stefan-Boltzmann value.Comment: 14 pages, 2 figures, JHEP3. v2: revised and expanded, with unchanged HTL results but corrected NLO strong-coupling result from AdS/CFT (which is incorrectly reproduced in almost all previous papers comparing weak and strong coupling results of N=4 SYM) and novel (unique) Pade approximant interpolating between weak and strong coupling result

    Quantum-fluctuation-induced repelling interaction of quantum string between walls

    Full text link
    Quantum string, which was brought into discussion recently as a model for the stripe phase in doped cuprates, is simulated by means of the density-matrix-renormalization-group method. String collides with adjacent neighbors, as it wonders, owing to quantum zero-point fluctuations. The energy cost due to the collisions is our main concern. Embedding a quantum string between rigid walls with separation d, we found that for sufficiently large d, collision-induced energy cost obeys the formula \sim exp (- A d^alpha) with alpha=0.808(1), and string's mean fluctuation width grows logarithmically \sim log d. Those results are not understood in terms of conventional picture that the string is `disordered,' and only the short-wave-length fluctuations contribute to collisions. Rather, our results support a recent proposal that owing to collisions, short-wave-length fluctuations are suppressed, but instead, long-wave-length fluctuations become significant. This mechanism would be responsible for stabilizing the stripe phase

    Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities

    Get PDF
    We analyze the signal processing required for the optimal detection of a stochastic background of gravitational radiation using laser interferometric detectors. Starting with basic assumptions about the statistical properties of a stochastic gravity-wave background, we derive expressions for the optimal filter function and signal-to-noise ratio for the cross-correlation of the outputs of two gravity-wave detectors. Sensitivity levels required for detection are then calculated. Issues related to: (i) calculating the signal-to-noise ratio for arbitrarily large stochastic backgrounds, (ii) performing the data analysis in the presence of nonstationary detector noise, (iii) combining data from multiple detector pairs to increase the sensitivity of a stochastic background search, (iv) correlating the outputs of 4 or more detectors, and (v) allowing for the possibility of correlated noise in the outputs of two detectors are discussed. We briefly describe a computer simulation which mimics the generation and detection of a simulated stochastic gravity-wave signal in the presence of simulated detector noise. Numerous graphs and tables of numerical data for the five major interferometers (LIGO-WA, LIGO-LA, VIRGO, GEO-600, and TAMA-300) are also given. The treatment given in this paper should be accessible to both theorists involved in data analysis and experimentalists involved in detector design and data acquisition.Comment: 81 pages, 30 postscript figures, REVTE

    Thermodynamics of AdS/QCD

    Get PDF
    We study finite temperature properties of four dimensional QCD-like gauge theories in the gauge theory/gravity duality picture. The gravity dual contains two deformed 5d AdS metrics, with and without a black hole, and a dilaton. We study the thermodynamics of the 4d boundary theory and constrain the two metrics so that they correspond to a high and a low temperature phase separated by a first order phase transition. The equation of state has the standard form for the pressure of a strongly coupled fluid modified by a vacuum energy, a bag constant. We determine the parameters of the deformation by using QCD results for TcT_c and the hadron spectrum. With these parameters, we show that the phase transition in the 4d boundary theory and the 5d bulk Hawking-Page transition agree. We probe the dynamics of the two phases by computing the quark-antiquark free energy in them and confirm that the transition corresponds to confinement-deconfinement transition.Comment: 1+19 pages, 6 figures, references added, section 3 improve

    Baryonic Response of Dense Holographic QCD

    Full text link
    The response function of a homogeneous and dense hadronic system to a time-dependent (baryon) vector potential is discussed for holographic dense QCD (D4/D8 embedding) both in the confined and deconfined phases. Confined holographic QCD is an uncompressible and static baryonic insulator at large N_c and large \lambda, with a gapped vector spectrum and a massless pion. Deconfined holographic QCD is a diffusive conductor with restored chiral symmetry and a gapped transverse baryonic current. Similarly, dense D3/D7 is diffusive for any non-zero temperature at large N_c and large \lambda. At zero temperature dense D3/D7 exhibits a baryonic longitudinal visco-elastic mode with a first sound speed \lambda/\sqrt{3} and a small width due to a shear viscosity to baryon ratio \eta/n_B=\hbar/4. This mode is turned diffusive by arbitrarily small temperatures, a hallmark of holography.Comment: V2: 47 pages, 7 figures, references added, typos correcte

    Deep inelastic scattering off a N=4 SYM plasma at strong coupling

    Get PDF
    By using the AdS/CFT correspondence we study the deep inelastic scattering of an R-current off a N=4 supersymmetric Yang-Mills (SYM) plasma at finite temperature and strong coupling. Within the supergravity approximation valid when the number of colors is large, we compute the structure functions by solving Maxwell equations in the space-time geometry of the AdS_5 black three-brane. We find a rather sharp transition between a low energy regime where the scattering is weak and quasi-elastic, and a high-energy regime where the current is completely absorbed. The critical energy for this transition determines the plasma saturation momentum in terms of its temperature T and the Bjorken x variable: Q_s=T/x. These results suggest a partonic picture for the plasma where all the partons have transverse momenta below the saturation momentum and occupation numbers of order one.Comment: Version accepted for publication in JHEP: more references added; some technical points were displaced from Sect. 4 to the new Appendix

    Quantum-fluctuation-induced collisions and subsequent excitation gap of an elastic string between walls

    Full text link
    An elastic string embedded between rigid walls is simulated by means of the density-matrix renormalization group. The string collides against the walls owing to the quantum-mechanical zero-point fluctuations. Such ``quantum entropic'' interaction has come under thorough theoretical investigation in the context of the stripe phase observed experimentally in doped cuprates. We found that the excitation gap opens in the form of exponential singularity DeltaE ~ exp(-Ad^sigma) (d: wall spacing) with the exponent sigma =0.6(3), which is substantially smaller than the meanfield value sigma=2. That is, the excitation gap is much larger than that anticipated from meanfield, suggesting that the string is subjected to robust pinning potential due to the quantum collisions. This feature supports Zaanen's ``order out of disorder'' mechanism which would be responsible to the stabilization of the stripe phase
    • …
    corecore