12 research outputs found

    microRNA-122 Abundance in Hepatocellular Carcinoma and Non-Tumor Liver Tissue from Japanese Patients with Persistent HCV versus HBV Infection

    Get PDF
    Mechanisms of hepatic carcinogenesis in chronic hepatitis B and hepatitis C are incompletely defined but often assumed to be similar and related to immune-mediated inflammation. Despite this, several studies hint at differences in expression of miR-122, a liver-specific microRNA with tumor suppressor properties, in hepatocellular carcinoma (HCC) associated with hepatitis B virus (HBV) versus hepatitis C virus (HCV) infection. Differences in the expression of miR-122 in these cancers would be of interest, as miR-122 is an essential host factor for HCV but not HBV replication. To determine whether the abundance of miR-122 in cancer tissue is influenced by the nature of the underlying virus infection, we measured miR-122 by qRT-PCR in paired tumor and non-tumor tissues from cohorts of HBV- and HCV-infected Japanese patients. miR-122 abundance was significantly reduced from normal in HBV-associated HCC, but not in liver cancer associated with HCV infection. This difference was independent of the degree of differentiation of the liver cancer. Surprisingly, we also found significant differences in miR-122 expression in non-tumor tissue, with miR-122 abundance reduced from normal in HCV- but not HBV-infected liver. Similar differences were observed in HCV- vs. HBV-infected chimpanzees. Among HCV-infected Japanese subjects, reductions in miR-122 abundance in non-tumor tissue were associated with a single nucleotide polymorphism near the IL28B gene that predicts poor response to interferon-based therapy (TG vs. TT genotype at rs8099917), and correlated negatively with the abundance of multiple interferon-stimulated gene transcripts. Reduced levels of miR-122 in chronic hepatitis C thus appear to be associated with endogenous interferon responses to the virus, while differences in miR-122 expression in HCV- versus HBV-associated HCC likely reflect virus-specific mechanisms contributing to carcinogenesis. The continued expression of miR-122 in HCV-associated HCC may signify an important role for HCV replication late in the progression to malignancy

    Non-targeted metabolomics analysis of cardiac Muscle Ring Finger-1 (MuRF1), MuRF2, and MuRF3 in vivo reveals novel and redundant metabolic changes

    Get PDF
    The muscle-specific ubiquitin ligases MuRF1, MuRF2, MuRF3 have been reported to have overlapping substrate specificities, interacting with each other as well as proteins involved in metabolism and cardiac function. In the heart, all three MuRF family proteins have proven critical to cardiac responses to ischemia and heart failure. The non-targeted metabolomics analysis of MuRF1-/-, MuRF2-/-, and MuRF3-/- hearts was initiated to investigate the hypothesis that MuRF1, MuRF2, and MuRF3 have a similarly altered metabolome, representing alterations in overlapping metabolic processes. Ventricular tissue was flash frozen and quantitatively analyzed by GC/MS using a library built upon the Fiehn GC/MS Metabolomics RTL Library. Non-targeted metabolomic analysis identified significant differences (via VIP statistical analysis) in taurine, myoinositol, and stearic acid for the three MuRF-/- phenotypes relative to their matched controls. Moreover, pathway enrichment analysis demonstrated that MuRF1-/- had significant changes in metabolite(s) involved in taurine metabolism and primary acid biosynthesis while MuRF2-/- had changes associated with ascorbic acid/aldarate metabolism (via VIP and t-test analysis vs. sibling-matched wildtype controls). By identifying the functional metabolic consequences of MuRF1, MuRF2, and MuRF3 in the intact heart, non-targeted metabolomics analysis discovered common pathways functionally affected by cardiac MuRF family proteins in vivo. These novel metabolomics findings will aid in guiding the molecular studies delineating the mechanisms that MuRF family proteins regulate metabolic pathways. Understanding these mechanism is an important key to understanding MuRF family proteins' protective effects on the heart during cardiac disease

    MuRF1 activity is present in cardiac mitochondria and regulates reactive oxygen species production in vivo

    Get PDF
    Erratum: https://link.springer.com/article/10.1007/s10863-014-9597-1MuRF1 is a previously reported ubiquitin-ligase found in striated muscle that targets troponin I and myosin heavy chain for degradation. While MuRF1 has been reported to interact with mitochondrial substrates in yeast two-hybrid studies, no studies have identified MuRF1’s role in regulating mitochondrial function to date. In the present study, we measured cardiac mitochondrial function from isolated permeabilized muscle fibers in previously phenotyped MuRF1 transgenic and MuRF1−/− mouse models to determine the role of MuRF1 in intermediate energy metabolism and ROS production. We identified a significant decrease in reactive oxygen species production in cardiac muscle fibers from MuRF1 transgenic mice with increased α-MHC driven MuRF1 expression. Increased MuRF1 expression in ex vivo and in vitro experiments revealed no alterations in the respiratory chain complex I and II function. Working perfusion experiments on MuRF1 transgenic hearts demonstrated significant changes in glucose oxidation. This is an factual error as written; however, total oxygen consumption was decreased. This data provides evidence for MuRF1 as a novel regulator of cardiac ROS, offering another mechanism by which increased MuRF1 expression may be cardioprotective in ischemia reperfusion injury, in addition to its inhibition of apoptosis via proteasome-mediate degradation of c-Jun. The lack of mitochondrial function phenotype identified in MuRF1−/− hearts may be due to the overlapping interactions of MuRF1 and MuRF2 with energy regulating proteins found by yeast two-hybrid studies reported here, implying a duplicity in MuRF1 and MuRF2’s regulation of mitochondrial function.Funding support from Medical Research Council, United Kingdom; National Institutes of Health, United States; British Heart Foundation, United Kingdo

    microRNA-122 Abundance in Hepatocellular Carcinoma and Non-Tumor Liver Tissue from Japanese Patients with Persistent HCV versus HBV Infection

    Get PDF
    <div><p>Mechanisms of hepatic carcinogenesis in chronic hepatitis B and hepatitis C are incompletely defined but often assumed to be similar and related to immune-mediated inflammation. Despite this, several studies hint at differences in expression of miR-122, a liver-specific microRNA with tumor suppressor properties, in hepatocellular carcinoma (HCC) associated with hepatitis B virus (HBV) versus hepatitis C virus (HCV) infection. Differences in the expression of miR-122 in these cancers would be of interest, as miR-122 is an essential host factor for HCV but not HBV replication. To determine whether the abundance of miR-122 in cancer tissue is influenced by the nature of the underlying virus infection, we measured miR-122 by qRT-PCR in paired tumor and non-tumor tissues from cohorts of HBV- and HCV-infected Japanese patients. miR-122 abundance was significantly reduced from normal in HBV-associated HCC, but not in liver cancer associated with HCV infection. This difference was independent of the degree of differentiation of the liver cancer. Surprisingly, we also found significant differences in miR-122 expression in non-tumor tissue, with miR-122 abundance reduced from normal in HCV- but not HBV-infected liver. Similar differences were observed in HCV- vs. HBV-infected chimpanzees. Among HCV-infected Japanese subjects, reductions in miR-122 abundance in non-tumor tissue were associated with a single nucleotide polymorphism near the IL28B gene that predicts poor response to interferon-based therapy (TG vs. TT genotype at rs8099917), and correlated negatively with the abundance of multiple interferon-stimulated gene transcripts. Reduced levels of miR-122 in chronic hepatitis C thus appear to be associated with endogenous interferon responses to the virus, while differences in miR-122 expression in HCV- versus HBV-associated HCC likely reflect virus-specific mechanisms contributing to carcinogenesis. The continued expression of miR-122 in HCV-associated HCC may signify an important role for HCV replication late in the progression to malignancy.</p> </div

    miR-122 expression in chimpanzee liver tissue.

    No full text
    <p>(<b>A</b>) Hepatic miR-122 abundance in liver biopsies from chimpanzees infected with HBV or HCV, or not infected with either virus (‘normal’). Statistical significance was assessed by non-paired two-sided t test. Bars represent mean values. (<b>B</b>) Liver miR-122 expression plotted against serum HCV RNA abundance from acutely HCV-infected chimpanzees. r<sub>s</sub> = Spearman rank-order correlation coefficient.</p

    miR-122 expression in paired HCC and non-tumor liver tissue from patients with chronic HBV and HCV infection and control, non-infected liver tissue.

    No full text
    <p>(<b>A</b>) miR-122 abundance quantified by qRT-PCR in paired tumor and non-tumor tissues and non-infected (‘normal’) liver from patients undergoing resection of metastatic tumors, normalized to total RNA. (<b>B</b>) Relative miR-122 abundance normalized to miR-24 abundance in the same tissues. (<b>C</b>) miR-122 abundance in HCC classified histologically as “moderately differentiated”, paired non-tumor tissue from the same patients, and non-infected (‘normal’) liver. (<b>D</b>) miR-122 abundance in the subset of tissues shown in panel C, normalized to miR-24 abundance. The statistical significance of differences between paired observations was estimated using the paired t test, while differences between non-paired observations were analyzed by the Mann-Whitney test.</p

    Comparison of small RNAs as normalizers for assessing miR-122 abundance.

    No full text
    <p>Shown in the panels at the top are the relative abundance of (<b>A</b>) U6 snRNA, (<b>B</b>) Let-7a, and (<b>C</b>) miR-24 miRNAs in paired tumor and non-tumor tissues from subjects with HBV or HCV infection, normalized to total RNA. Bars represent median and quartiles for each group. Statistical comparisons between groups were made with paired or unpaired t tests, and are shown only if p<.05. In the lower set of panels, (<b>D</b>) U6, (<b>E</b>) Let-7a, and (<b>F</b>) miR-122 abundance are plotted as a function of miR-24 abundance. r<sub>s</sub> = Spearman rank-order correlation coefficient.</p

    Relative abundance of miR-191 in paired HCC and non-tumor tissue from subjects with HBV or HCV infection.

    No full text
    <p>Relative miR-191 abundance in paired tumor and non-tumor samples from HBV- and HCV-infected subjects normalized to total RNA. Statistical significance was assessed in two-sided paired t tests for comparisons between tumor and non-tumor tissue, or two-sided unpaired t test for comparison between infection groups.</p
    corecore