220 research outputs found

    The first genome assembly of fungal pathogen Pyrenophora tritici-repentis race 1 isolate using Oxford Nanopore MinION sequencing

    Get PDF
    Objectives: The assembly of fungal genomes using short-reads is challenged by long repetitive and low GC regions. However, long-read sequencing technologies, such as PacBio and Oxford Nanopore, are able to overcome many problematic regions, thereby providing an opportunity to improve fragmented genome assemblies derived from short reads only. Here, a necrotrophic fungal pathogen Pyrenophora tritici-repentis (Ptr) isolate 134 (Ptr134), which causes tan spot disease on wheat, was sequenced on a MinION using Oxford Nanopore Technologies (ONT), to improve on a previous Illumina short-read genome assembly and provide a more complete genome resource for pan-genomic analyses of Ptr. Results: The genome of Ptr134 sequenced on a MinION using ONT was assembled into 28 contiguous sequences with a total length of 40.79 Mb and GC content of 50.81%. The long-read assembly provided 6.79 Mb of new sequence and 2846 extra annotated protein coding genes as compared to the previous short-read assembly. This improved genome sequence represents near complete chromosomes, an important resource for large scale and pan genomic comparative analyses

    A new PacBio genome sequence of an Australian Pyrenophora tritici-repentis race 1 isolate

    Get PDF
    Objectives: The necrotrophic fungal pathogen Pyrenophora tritici-repentis (Ptr) is the causal agent of tan spot a major disease of wheat. We have generated a new genome resource for an Australian Ptr race 1 isolate V1 to support comparative 'omics analyses. In particular, the V1 PacBio Biosciences long-read sequence assembly was generated to confirm the stability of large-scale genome rearrangements of the Australian race 1 isolate M4 when compared to the North American race 1 isolate Pt-1C-BFP. Results: Over 1.3 million reads were sequenced by PacBio Sequel small-molecule real-time sequencing (SRMT) cell to yield 11.4 Gb for the genome assembly of V1 (285X coverage), with median and maximum read lengths of 8959 bp and 72,292 bp respectively. The V1 genome was assembled into 33 contiguous sequences with a of total length 40.4 Mb and GC content of 50.44%. A total of 14,050 protein coding genes were predicted and annotated for V1. Of these 11,519 genes were orthologous to both Pt-1C-BFP and M4. Whole genome alignment of the Australian long-read assemblies (V1 to M4) confirmed previously identified large-scale genome rearrangements between M4 and Pt-1C-BFP and presented small scale variations, which included a sequence break within a race-specific region for ToxA, a well-known necrotrophic effector gene

    Evaluation of Pyrenophora tritici-repentis Infection of Wheat Heads

    Get PDF
    The incidence of wheat head infection by Pyrenophora tritici-repentis (Ptr), the etiological agent of tan spot disease, was evaluated during grain development in a glasshouse experiment. Heads artificially inoculated with a Ptr spore suspension developed widespread brown spots across the spikelets, and mycelia and conidophores were observed on glumes and awns. Seeds of heavily infected heads were darkened and shrivelled, but no red smudge symptoms were apparent. The recovery rate of Ptr isolates from the inoculated wheat heads was low, and colonies that were re-isolated displayed an irregular morphology with reddish mycelia when grown on agar plates. The presence of Ptr on inoculated wheat heads was assessed directly via PCR detection, and a limitation of Ptr hyphae to proliferate beyond the point of contact of spore inoculum on floret tissues was observed. The systemic transmission of Ptr from infected seeds was minimal; however, saprophytic growth of the pathogen occurred on the senescing leaves of wheat plants grown from inoculated seeds. Thus, even though Ptr seed infection is not as common as foliar infection, infected seeds are still a source of disease inoculum and screening for pathogen contamination is advisable

    Generation of a ToxA knockout strain of the wheat tan spot pathogen Pyrenophora tritici-repentis

    Get PDF
    The necrotrophic fungal pathogen Pyrenophora tritici-repentis causes tan spot, a major disease of wheat throughout the world. The proteinaceous effector ToxA is responsible for foliar necrosis on ToxA sensitive wheat genotypes. The single copy ToxA gene was deleted from a wild-type race 1 P. tritici-repentis isolate via homologous recombination of a knockout construct. Expression of the ToxA transcript was found to be absent in transformants (toxa), as was ToxA protein production in fungal culture filtrates. Plant bioassays were conducted to test transformant pathogenicity. The toxa strains were unable to induce necrosis on ToxA sensitivity wheat genotypes. To our knowledge, this is the first demonstration of a targeted gene knockout in P. tritici-repentis. The ability to undertake gene deletions will facilitate the characterisation of other pathogenicity effectors of this economically significant necrotroph

    Genomic distribution of a novel Pyrenophora tritici-repentis ToxA insertion element

    Get PDF
    © 2018 Moolhuijzen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The ToxA effector is a major virulence gene of Pyrenophora tritici-repentis (Ptr), a necrotrophic fungus and the causal agent of tan spot disease of wheat. ToxA and co-located genes are believed to be the result of a recent horizontally transferred highly conserved 14kb region a major pathogenic event for Ptr. Since this event, monitoring isolates for pathogenic changes has become important to help understand the underlying mechanisms in play. Here we examined ToxA in 100 Ptr isolates from Australia, Europe, North and South America and the Middle East, and uncovered in isolates from Denmark, Germany and New Zealand a new variation, a novel 166 bp insertion element (PtrHp1) which can form a perfectly matched 59 bp inverted repeat hairpin structure located downstream of the ToxA coding sequence in the 3' UTR exon. A wider examination revealed PtrHp1 elements to be distributed throughout the genome. Analysis of genomes from Australia and North America had 50-112 perfect copies that often overlap other genes. The hairpin element appears to be unique to Ptr and the lack of ancient origins in other species suggests that PtrHp1 emerged after Ptr speciation. Furthermore, the ToxA UTR insertion site is identical for different isolates, which suggests a single insertion event occurred after the ToxA horizontal transfer. In vitro and in planta-detached leaf assays found that the PtrHp1 element insertion had no effect on ToxA expression. However, variation in the expression of ToxA was detected between the Ptr isolates from different demographic locations, which appears to be unrelated to the presence of the element. We envision that this discovery may contribute towards future understanding of the possible role of hairpin elements in Ptr

    Heterologous Expression of the Pyrenophora tritici-repentis Effector Proteins ToxA and ToxB, and the Prevalence of Effector Sensitivity in Australian Cereal Crops

    Get PDF
    Here, we evaluate the expression of the proteinaceous effectors ToxA and ToxB, produced by the necrotrophic fungal pathogen Pyrenophora tritici-repentis, which confer tan spot disease susceptibility on wheat. These necrotrophic effectors were expressed in two heterologous systems: Escherichia coli and Pichia pastoris. The E. coli SHuffle system was demonstrated to be superior to P. pastoris in generating high-levels of recombinant proteins that were soluble and stable. In addition, protein extracts from P. pastoris induced non-specific chlorosis on wheat, postulated to be caused by co-purified glucanases secreted by the host. Up to 79.6 μg/ml of ToxB was obtained using the SHuffle system in the absence of the native signal peptide, whilst the ToxA yield was considerably lower at 3.2 μg/ml. Results indicated that a histidine tag at the ToxA C-terminus interfered with effector functionality. Heterologously expressed ToxA and ToxB were tested on a panel of Australian cereals, including 122 varieties of bread wheat, 16 durum, 20 triticale and 5 barley varieties, as well as common plant model species including tobacco and Arabidopsis thaliana. A varying degree of effector sensitivities was observed, with a higher ToxB sensitivity and prevalence in the durum and triticale varieties. ToxB-induced chlorosis was also detected on barley. The heterologous expression of effectors that are easily scalable, will facilitate effector-assisted selection of varieties in wheat breeding programs as well as the investigation of P. tritici-repentis effectors in host and non-host interactions

    Cost-effectiveness of a patient-centred approach to managing multimorbidity in primary care:a pragmatic cluster randomised controlled trial

    Get PDF
    Objective Patients with multiple chronic health conditions are often managed in a disjointed fashion in primary care, with annual review clinic appointments offered separately for each condition. This study aimed to determine the cost-effectiveness of the 3D intervention, which was developed to improve the system of care. Design Economic evaluation conducted alongside a pragmatic cluster-randomised trial. Setting General practices in three centres in England and Scotland. Participants 797 adults with three or more chronic conditions were randomised to the 3D intervention, while 749 participants were randomised to receive usual care. Intervention The 3D approach: comprehensive 6-monthly general practitioner consultations, supported by medication reviews and nurse appointments. Primary and secondary outcome measures The primary economic evaluation assessed the cost per quality-adjusted life year (QALY) gained from the perspective of the National Health Service (NHS) and personal social services (PSS). Costs were related to changes in a range of secondary outcomes (QALYs accrued by both participants and carers, and deaths) in a cost-consequences analysis from the perspectives of the NHS/PSS, patients/carers and productivity losses. Results Very small increases were found in both QALYs (adjusted mean difference 0.007 (-0.009 to 0.023)) and costs (adjusted mean difference 126 pound (-739 pound to 991)) pound in the intervention arm compared with usual care after 15 months. The incremental cost-effectiveness ratio was 18 pound 499, with a 50.8% chance of being cost-effective at a willingness-to-pay threshold of 20 pound 000 per QALY (55.8% at 30 pound 000 per QALY). Conclusions The small differences in costs and outcomes were consistent with chance, and the uncertainty was substantial; therefore, the evidence for the cost-effectiveness of the 3D approach from the NHS/PSS perspective should be considered equivocal

    Correction to: PacBio genome sequencing reveals new insights into the genomic organisation of the multi-copy ToxB gene of the wheat fungal pathogen Pyrenophora tritici-repentis

    Get PDF
    Following publication of the original article [1], it was reported that an update on the location of DW5 ToxB cluster relative to the M4 chromosome 10 fusion event was required. Consequently, the Abstract, Table 2, Fig. 7 and several relevant sections of the article have been updated. The changes are given in this Correction article with the updated text highlighted in bold face. Abstract A total of ten identical ToxB gene copies were identified and based on flanking sequence identity, nine loci appeared associated with chromosome 11 and a single copy with chromosome 5. Chromosome 11 multiple ToxB gene loci were separated by large sequence regions between 31 - 66 kb within larger segmental duplications in an alternating pattern related to loci strand, and flanked by transposable elements. Whole genome comparative analysis between Ptr races 1 and 5 A chromosome fusion between chromosome 10 and 11 (referred to as chromosome 10) in Australian isolate M4 resolved by optical mapping [2] was not observed for DW5, where DW5 contig 8 possessed both 5’ and 3’ telomere motifs (Table 2), which would represent a chromosome (telomere to telomere). Ptr ToxB multiloci analysis In this study, the ToxB loci were located on chromosome 5 and 11, which had assembly sizes of 3.36 and 2.18 Mb respectively, which are close to the previously estimated chromosome sizes by Martinez et. al, (2004). Of the ten ToxB loci, nine appeared to be associated with the smaller chromosome 11 located in the 3’ distal region. A Ptr chromosome noted for a chromosome fusion event for a race 1 isolate M4 [2]. The telomere to telomere support for eleven DW5 chromosomes is similar to the findings for another American race 1 isolate Ptr Pt-1C-BFP [3], unlike the 10 chromosome genome of Australian isolate M4 (1) (Fig. 7). (Table presented.). (Figure presented.). Ptr ToxB patterns of duplication In addition to the positioning of the ToxB duplication within the distal region of chromosome 11, ToxB loci were located equidistant downstream from dimer TnphaT transposases, a familiar gene found coupled to Ptr ToxA and within the horizontally transferred region, also found in Parastagonospora nodorum and Bipolaris sorokiniana [4, 5]

    PacBio genome sequencing reveals new insights into the genomic organisation of the multi-copy ToxB gene of the wheat fungal pathogen Pyrenophora tritici-repentis

    Get PDF
    Background: Necrotrophic effector proteins secreted by fungal pathogens are important virulence factors that mediate the development of disease in wheat. Pyrenophora tritici-repentis (Ptr), the causal agent of wheat tan spot, has a race structure dependent on the combination of effectors. In Ptr, ToxA and ToxB are known proteinaceous effectors responsible for necrosis and chlorosis respectively. While Ptr ToxA is encoded by the single gene ToxA, ToxB has multiple loci in the Ptr genome, which is postulated to be directly related to the level of ToxB production and leaf chlorosis. Although previous analysis has indicated that the majority of the ToxB loci lie on a single chromosome, the exact number and chromosomal locations for all the ToxB loci have not been fully identified. Results: In this study, we have sequenced the genome of a race 5 ToxB-producing isolate (DW5), using PacBio long read technology, and found that ToxB duplications are nested in the complex subtelomeric chromosomal regions. A total of ten identical ToxB gene copies were identified and based on flanking sequence identity, nine loci appeared associated with chromosome 10 and a single copy with chromosome 5. Chromosome 10 multiple ToxB gene loci were separated by large sequence regions between 31 and 66 kb within larger segmental duplications in an alternating pattern related to loci strand, and flanked by transposable elements. Conclusion: This work provides for the first time the full accompaniment of ToxB loci and surrounding regions, and identifies the organization and distribution of ten ToxB loci to subtelomeric regions. To our knowledge, this is the first report of an interwoven strand-related duplication pattern event. This study further highlights the importance of resolving the highly complex distal chromosomal regions, that remain difficult to assemble, and can harbour important effectors and virulence factors
    • …
    corecore