42 research outputs found

    Aquaporins in the wild: natural genetic diversity and selective pressure in the PIP gene family in five Neotropical tree species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tropical trees undergo severe stress through seasonal drought and flooding, and the ability of these species to respond may be a major factor in their survival in tropical ecosystems, particularly in relation to global climate change. Aquaporins are involved in the regulation of water flow and have been shown to be involved in drought response; they may therefore play a major adaptive role in these species. We describe genetic diversity in the PIP sub-family of the widespread gene family of Aquaporins in five Neotropical tree species covering four botanical families.</p> <p>Results</p> <p>PIP Aquaporin subfamily genes were isolated, and their DNA sequence polymorphisms characterised in natural populations. Sequence data were analysed with statistical tests of standard neutral equilibrium and demographic scenarios simulated to compare with the observed results. Chloroplast SSRs were also used to test demographic transitions. Most gene fragments are highly polymorphic and display signatures of balancing selection or bottlenecks; chloroplast SSR markers have significant statistics that do not conform to expectations for population bottlenecks. Although not incompatible with a purely demographic scenario, the combination of all tests tends to favour a selective interpretation of extant gene diversity.</p> <p>Conclusions</p> <p>Tropical tree PIP genes may generally undergo balancing selection, which may maintain high levels of genetic diversity at these loci. Genetic variation at PIP genes may represent a response to variable environmental conditions.</p

    Garlic and its bioactive compounds: implications for methane emissions and ruminant nutrition

    Get PDF
    Methane (CH4) produced by ruminants contributes as a source of anthropogenic greenhouse gases (GHG). Plant-derived bioactive compounds have been investigated for their potential to reduce CH4 emissions from ruminant livestock. Garlic contains bioactive organosulphur compounds, which have been reported to be effective in reducing CH4 emissions, but they have demonstrated inconsistent effects in reducing CH4 production in the rumen. This might be because different types of garlic-based supplements vary in their concentrations of bioactive compounds. Therefore, further investigation is needed, such as the mode of action and persistence of the bioactive compound, to determine whether these compounds can be used successfully to inhibit rumen methanogenesis. The present review discusses garlic and its potential contribution to reducing CH4 production by ruminant animals and discusses how differences in the diet and the bioactive compound concentration in garlic might contribute to these differences
    corecore