15 research outputs found

    Clinical Grade Production of Wilms' Tumor-1 Loaded Cord Blood-Derived Dendritic Cells to Prevent Relapse in Pediatric AML After Cord Blood Transplantation

    Get PDF
    Hematopoietic cell transplantation (HCT) is a last resort, potentially curative treatment option for pediatric patients with refractory acute myeloid leukemia (AML). Cord blood transplantation (CBT) results in less relapses and less graft-versus-host disease when compared to other sources. Nevertheless, still more than half of the children die from relapses. We therefore designed a strategy to prevent relapses by inducing anti-AML immunity after CBT, using a CB-derived dendritic cell (CBDC) vaccine generated from CD34+ CB cells from the same graft. We here describe the optimization and validation of good manufacturing practice (GMP)-grade production of the CBDC vaccine. We show the feasibility of expanding low amounts of CD34+ cells in a closed bag system to sufficient DCs per patient for at least three rounds of vaccinations. The CBDCs showed upregulated costimulatory molecules after maturation and showed enhanced CCR7-dependent migration toward CCL19 in a trans-well migrations assay. CBDCs expressed Wilms' tumor 1 (WT1) protein after electroporation with WT1-mRNA, but were not as potent as CBDCs loaded with synthetic long peptides (peptivator). The WT1-peptivator loaded CBDCs were able to stimulate T-cells both in a mixed lymphocyte reaction as well as in an antigen-specific (autologous) setting. The autologous stimulated T-cells lysed not only the WT1+ cell line, but most importantly, also primary pediatric AML cells. Altogether, we provide a GMP-protocol of a highly mature CBDC vaccine, loaded with WT1 peptivator and able to stimulate autologous T-cells in an antigen-specific manner. Finally, these T-cells lysed primary pediatric AML demonstrating the competence of the CBDC vaccine strategy

    Reprogrammation mĂ©tabolique dans les leucĂ©mies aiguĂ«s myĂ©loĂŻdes de novo de l’adulte : impact clinique

    No full text
    MĂ©moire de DiplĂŽme d'Etudes SpĂ©cialisĂ©es (DES) tenant lieu de thĂšse d'exercice.Les LAM sont un ensemble de prolifĂ©rations malignes, caractĂ©risĂ©es par l’accumulation de progĂ©niteurs immatures dans la moelle osseuse et le sang. Leur pronostic est pĂ©joratif, dĂ» Ă  la prĂ©sence d’anomalies chromosomiques et molĂ©culaires, et aux dĂ©rĂ©gulations mĂ©taboliques favorisant la prolifĂ©ration des cellules leucĂ©miques. Nous avons inclus 50 patients atteints de LAM au diagnostic, et analysĂ© leurs profils mĂ©taboliques par RMN HRMAS. Dans une approche de mĂ©tabolomique, nous avons utilisĂ© des mĂ©thodes statistiques pour trouver des mĂ©tabolites caractĂ©ristiques d’un Ă©tat donnĂ©. Nous avons montrĂ© qu’il existait une diversitĂ© de profils mĂ©taboliques selon les sous-types de LAM et selon le statut molĂ©culaire des patients. Le pronostic Ă©tait fortement impactĂ© par plusieurs mĂ©tabolites, dont le 2-HG, oncomĂ©tabolite produit par la mutation IDH, qui apparaĂźt comme Ă©tant de pronostic favorable. Le lien entre le mĂ©tabolisme et le statut molĂ©culaire est fort concernant ce mĂ©tabolite, car sa production intracellulaire est directement liĂ©e Ă  la prĂ©sence de la mutation IDH. A l’inverse, les dĂ©rĂ©gulations du mĂ©tabolisme phospholipidique ont un impact nĂ©gatif, via deux de ses mĂ©tabolites principaux qui peuvent ĂȘtre considĂ©rĂ©s comme des marqueurs de progression tumorale et d’agressivitĂ©. Nous avons pu mettre en Ă©vidence une surexpression de glutathion et d’alanine chez certains patients chimiorĂ©sistants au traitement. Cette approche nous a permis de mieux caractĂ©riser les altĂ©rations mĂ©taboliques des patients LAM selon leur statut molĂ©culaire, et d’établir une liste de biomarqueurs pronostiques qui pourraient ĂȘtre utiles lors de la prise de dĂ©cision thĂ©rapeutique au diagnostic

    Reprogrammation métabolique dans les leucémies aigues myéloblastiques (LAM) : Impact clinique et mécanismes oncogéniques

    No full text
    Cells metabolism is strongly disturbed and deregulated in cancers. Several examples reflect this phenomenon, including metabolic reprogramming described in the Warburg effect, functional deregulations of particular metabolic pathways such as the increase of the ROS production in cancer cells, or the identification of oncometabolites linked to acquired mutations such as IDH1/2 mutations, which lead to the production of a metabolite directly linked to the leukemic process in AML. In order to characterize the metabolic reprogramming associated with the leukemic process, we analyzed by an HRMAS approach the metabolites produced by different leukemic cell lines representing different subtypes of AML (different genotype and phenotype). In this model, we have shown that each type of cell line exhibited a particular metabolism in the basal state, witnessing a different metabolic signature depending on the nature of the cell line. In condition of metabolic stress (culture in a serum-free environment), all these cell lines develop mechanisms to adapt their metabolism to nutrient deficiency. Particularly, there is a common signature characterized by the overexpression of metabolites of the phospholipid pathway and of regulation of oxidative stress after 24 hours of culture in a medium without serum. Thanks to these adaptation mechanisms, the leukemic cells find after 48 hours a viability higher than 95% and a metabolic profile almost identical to normal conditions. These results show that leukemic cells develop common survival mechanisms, notably involving deregulations of lipid metabolism, which allow them to continue to proliferate in condition of metabolic stress. Other experimental conditions have been tested, in particular in glucose deficiency conditions in order to explore the path of deregulation of some amino acids such as alanine in these cell lines. Moreover, the quantitative and qualitative study of fatty acids in AMLs through a lipidomic approach reveals a similar adaptation of the lipidomic profiles of the cell lines in the same serum-free conditions previously tested. In parallel, in a study on 54 patients diagnosed with AML, we confirmed by the HRMAS approach that there were differences in metabolic profile in AML patients according to the AML subtype. We also showed that these metabolic signatures were significantly correlated with cytogenetic prognostic subgroups, response to chemotherapy treatment and patient survival. We show in particular that the metabolites overexpressed in patients with poor prognosis are found overexpressed also in patients refractory to treatment. The analysis of these metabolites shows the particular role of several metabolic pathways in the prognosis of AML: i) deregulation of the synthesis of 2-hydroxyglutarate associated with mutations in the IDH1/2 enzyme, ii) deregulation of the metabolism of phospholipids, showing an overexpression of phospholipids in adverse prognosis patients plasmas, and iii) overexpression of the synthesis of some amino acids in chemoresistant patients, suggesting an involvement of the LKB1/AMPK signaling pathway.Le mĂ©tabolisme des cellules cancĂ©reuses est fortement perturbĂ© et dĂ©rĂ©gulĂ© dans les cancers. Plusieurs exemples illustrent ce phĂ©nomĂšne, notamment la reprogrammation mĂ©tabolique dĂ©crite dans l’effet Warburg, les dĂ©rĂ©gulations fonctionnelles de certaines voies mĂ©taboliques telles que l’augmentation de la production de ROS dans les cellules cancĂ©reuses, ou la mise en Ă©vidence d’oncomĂ©tabolites liĂ©s Ă  des mutations acquises telles que les mutations IDH1/2 qui entraĂźnent la production d’un mĂ©tabolite directement associĂ© au processus leucĂ©mique dans les LAM. Afin de caractĂ©riser les reprogrammations mĂ©taboliques associĂ©es au processus leucĂ©mique, nous avons analysĂ© par une approche HRMAS les mĂ©tabolites produits par diffĂ©rentes lignĂ©es cellulaires leucĂ©miques reprĂ©sentant diffĂ©rents sous types de LAM (gĂ©notype et phĂ©notype diffĂ©rents). Dans ce modĂšle, nous avons montrĂ© que chaque type de lignĂ©e prĂ©sentait un mĂ©tabolisme particulier Ă  l’état basal, tĂ©moin d’une signature mĂ©tabolique diffĂ©rente selon la nature de la lignĂ©e. En situation de stress mĂ©tabolique (culture en milieu sans sĂ©rum), toutes ces lignĂ©es dĂ©veloppent des mĂ©canismes d’adaptation de leur mĂ©tabolisme Ă  la carence en nutriments. En particulier, il existe une signature commune caractĂ©risĂ©e par la surexpression de mĂ©tabolites de la voie des phospholipides et de rĂ©gulation du stress oxydant au bout de 24h de culture en milieu sans sĂ©rum. GrĂące Ă  ces mĂ©canismes d’adaptation les cellules leucĂ©miques retrouvent au bout de 48h, une viabilitĂ© supĂ©rieure Ă  95% et un profil mĂ©tabolique quasi-identique aux conditions normales. Ces rĂ©sultats montrent que les cellules leucĂ©miques dĂ©veloppent des mĂ©canismes communs de survie, impliquant notamment des dĂ©rĂ©gulations du mĂ©tabolisme des lipides, qui leur permettent de continuer Ă  prolifĂ©rer en situation de stress mĂ©tabolique. D’autres conditions expĂ©rimentales ont Ă©tĂ© testĂ©es, notamment en condition de carence en glucose afin d’explorer la piste de la dĂ©rĂ©gulation de certains acides aminĂ©s comme l’alanine dans ces lignĂ©es. De plus, l’étude quantitative et qualitative des acides gras dans les LAM via une approche lipidomique rĂ©vĂšle une adaptation similaire des profils lipidomiques des lignĂ©es dans les mĂȘmes conditions de privation en sĂ©rum prĂ©cĂ©demment testĂ©es. En parallĂšle, dans une Ă©tude sur 54 patients au diagnostic de LAM, nous avons confirmĂ© par l’approche HRMAS qu’il existait chez les patients LAM des diffĂ©rences de profil mĂ©tabolique en fonction du sous-type de LAM. Nous avons Ă©galement montrĂ© que ces signatures mĂ©taboliques Ă©taient significativement corrĂ©lĂ©es aux sous-groupes pronostiques cytogĂ©nĂ©tiques, Ă  la rĂ©ponse au traitement par chimiothĂ©rapie et Ă  la survie des patients. Nous montrons notamment que les mĂ©tabolites surexprimĂ©s chez les patients de mauvais pronostic sont retrouvĂ©s surexprimĂ©s Ă©galement chez les patients rĂ©fractaires au traitement. L’analyse de ces mĂ©tabolites montrent le rĂŽle particulier de plusieurs voies mĂ©taboliques dans le pronostic des LAM : i) la dĂ©rĂ©gulation de la synthĂšse de 2-hydroxyglutarate associĂ©e aux mutations de l’enzyme IDH1/2, ii) la dĂ©rĂ©gulation du mĂ©tabolisme des phospholipides, retrouvant une surexpression de phospholipides dans les plasmas de patients de pronostic dĂ©favorable, et iii) la surexpression de la synthĂšse de certains acides aminĂ©s chez les patients chimiorĂ©sistants, suggĂ©rant une implication de la voie de signalisation LKB1/AMPK

    Metabolic reprogramming in AML : Clinical impact and oncogenic mechanisms

    No full text
    Le mĂ©tabolisme des cellules cancĂ©reuses est fortement perturbĂ© et dĂ©rĂ©gulĂ© dans les cancers. Plusieurs exemples illustrent ce phĂ©nomĂšne, notamment la reprogrammation mĂ©tabolique dĂ©crite dans l’effet Warburg, les dĂ©rĂ©gulations fonctionnelles de certaines voies mĂ©taboliques telles que l’augmentation de la production de ROS dans les cellules cancĂ©reuses, ou la mise en Ă©vidence d’oncomĂ©tabolites liĂ©s Ă  des mutations acquises telles que les mutations IDH1/2 qui entraĂźnent la production d’un mĂ©tabolite directement associĂ© au processus leucĂ©mique dans les LAM. Afin de caractĂ©riser les reprogrammations mĂ©taboliques associĂ©es au processus leucĂ©mique, nous avons analysĂ© par une approche HRMAS les mĂ©tabolites produits par diffĂ©rentes lignĂ©es cellulaires leucĂ©miques reprĂ©sentant diffĂ©rents sous types de LAM (gĂ©notype et phĂ©notype diffĂ©rents). Dans ce modĂšle, nous avons montrĂ© que chaque type de lignĂ©e prĂ©sentait un mĂ©tabolisme particulier Ă  l’état basal, tĂ©moin d’une signature mĂ©tabolique diffĂ©rente selon la nature de la lignĂ©e. En situation de stress mĂ©tabolique (culture en milieu sans sĂ©rum), toutes ces lignĂ©es dĂ©veloppent des mĂ©canismes d’adaptation de leur mĂ©tabolisme Ă  la carence en nutriments. En particulier, il existe une signature commune caractĂ©risĂ©e par la surexpression de mĂ©tabolites de la voie des phospholipides et de rĂ©gulation du stress oxydant au bout de 24h de culture en milieu sans sĂ©rum. GrĂące Ă  ces mĂ©canismes d’adaptation les cellules leucĂ©miques retrouvent au bout de 48h, une viabilitĂ© supĂ©rieure Ă  95% et un profil mĂ©tabolique quasi-identique aux conditions normales. Ces rĂ©sultats montrent que les cellules leucĂ©miques dĂ©veloppent des mĂ©canismes communs de survie, impliquant notamment des dĂ©rĂ©gulations du mĂ©tabolisme des lipides, qui leur permettent de continuer Ă  prolifĂ©rer en situation de stress mĂ©tabolique. D’autres conditions expĂ©rimentales ont Ă©tĂ© testĂ©es, notamment en condition de carence en glucose afin d’explorer la piste de la dĂ©rĂ©gulation de certains acides aminĂ©s comme l’alanine dans ces lignĂ©es. De plus, l’étude quantitative et qualitative des acides gras dans les LAM via une approche lipidomique rĂ©vĂšle une adaptation similaire des profils lipidomiques des lignĂ©es dans les mĂȘmes conditions de privation en sĂ©rum prĂ©cĂ©demment testĂ©es. En parallĂšle, dans une Ă©tude sur 54 patients au diagnostic de LAM, nous avons confirmĂ© par l’approche HRMAS qu’il existait chez les patients LAM des diffĂ©rences de profil mĂ©tabolique en fonction du sous-type de LAM. Nous avons Ă©galement montrĂ© que ces signatures mĂ©taboliques Ă©taient significativement corrĂ©lĂ©es aux sous-groupes pronostiques cytogĂ©nĂ©tiques, Ă  la rĂ©ponse au traitement par chimiothĂ©rapie et Ă  la survie des patients. Nous montrons notamment que les mĂ©tabolites surexprimĂ©s chez les patients de mauvais pronostic sont retrouvĂ©s surexprimĂ©s Ă©galement chez les patients rĂ©fractaires au traitement. L’analyse de ces mĂ©tabolites montrent le rĂŽle particulier de plusieurs voies mĂ©taboliques dans le pronostic des LAM : i) la dĂ©rĂ©gulation de la synthĂšse de 2-hydroxyglutarate associĂ©e aux mutations de l’enzyme IDH1/2, ii) la dĂ©rĂ©gulation du mĂ©tabolisme des phospholipides, retrouvant une surexpression de phospholipides dans les plasmas de patients de pronostic dĂ©favorable, et iii) la surexpression de la synthĂšse de certains acides aminĂ©s chez les patients chimiorĂ©sistants, suggĂ©rant une implication de la voie de signalisation LKB1/AMPK.Cells metabolism is strongly disturbed and deregulated in cancers. Several examples reflect this phenomenon, including metabolic reprogramming described in the Warburg effect, functional deregulations of particular metabolic pathways such as the increase of the ROS production in cancer cells, or the identification of oncometabolites linked to acquired mutations such as IDH1/2 mutations, which lead to the production of a metabolite directly linked to the leukemic process in AML. In order to characterize the metabolic reprogramming associated with the leukemic process, we analyzed by an HRMAS approach the metabolites produced by different leukemic cell lines representing different subtypes of AML (different genotype and phenotype). In this model, we have shown that each type of cell line exhibited a particular metabolism in the basal state, witnessing a different metabolic signature depending on the nature of the cell line. In condition of metabolic stress (culture in a serum-free environment), all these cell lines develop mechanisms to adapt their metabolism to nutrient deficiency. Particularly, there is a common signature characterized by the overexpression of metabolites of the phospholipid pathway and of regulation of oxidative stress after 24 hours of culture in a medium without serum. Thanks to these adaptation mechanisms, the leukemic cells find after 48 hours a viability higher than 95% and a metabolic profile almost identical to normal conditions. These results show that leukemic cells develop common survival mechanisms, notably involving deregulations of lipid metabolism, which allow them to continue to proliferate in condition of metabolic stress. Other experimental conditions have been tested, in particular in glucose deficiency conditions in order to explore the path of deregulation of some amino acids such as alanine in these cell lines. Moreover, the quantitative and qualitative study of fatty acids in AMLs through a lipidomic approach reveals a similar adaptation of the lipidomic profiles of the cell lines in the same serum-free conditions previously tested. In parallel, in a study on 54 patients diagnosed with AML, we confirmed by the HRMAS approach that there were differences in metabolic profile in AML patients according to the AML subtype. We also showed that these metabolic signatures were significantly correlated with cytogenetic prognostic subgroups, response to chemotherapy treatment and patient survival. We show in particular that the metabolites overexpressed in patients with poor prognosis are found overexpressed also in patients refractory to treatment. The analysis of these metabolites shows the particular role of several metabolic pathways in the prognosis of AML: i) deregulation of the synthesis of 2-hydroxyglutarate associated with mutations in the IDH1/2 enzyme, ii) deregulation of the metabolism of phospholipids, showing an overexpression of phospholipids in adverse prognosis patients plasmas, and iii) overexpression of the synthesis of some amino acids in chemoresistant patients, suggesting an involvement of the LKB1/AMPK signaling pathway

    Aleukemic congenital leukemia cutis preceding monocytic leukemia with favorable outcome: A case report

    No full text
    Abstract A newborn girl had typical “blueberry muffin” skin lesions, which shows histopathologic features of monocytic leukemia cutis. The systemic leukemia was demonstrated after one month of life. She was treated by chemotherapy, including induction and three consolidation cures, according to the ELAM02 protocol, which led to complete remission. This case report with congenital form of AML5 cutaneous localization, preceding systemic involvement, with a 5‐year follow‐up and positive outcome is remarkable

    Variation in Lipid Species Profiles among Leukemic Cells Significantly Impacts Their Sensitivity to the Drug Targeting of Lipid Metabolism and the Prognosis of AML Patients

    No full text
    International audienceSeveral studies have linked bad prognoses of acute myeloid leukemia (AML) to the ability of leukemic cells to reprogram their metabolism and, in particular, their lipid metabolism. In this context, we performed “in-depth” characterization of fatty acids (FAs) and lipid species in leukemic cell lines and in plasma from AML patients. We firstly showed that leukemic cell lines harbored significant differences in their lipid profiles at steady state, and that under nutrient stress, they developed common mechanisms of protection that led to variation in the same lipid species; this highlights that the remodeling of lipid species is a major and shared mechanism of adaptation to stress in leukemic cells. We also showed that sensitivity to etomoxir, which blocks fatty acid oxidation (FAO), was dependent on the initial lipid profile of cell lines, suggesting that only a particular “lipidic phenotype” is sensitive to the drug targeting of FAO. We then showed that the lipid profiles of plasma samples from AML patients were significantly correlated with the prognosis of patients. In particular, we highlighted the impact of phosphocholine and phosphatidyl-choline metabolism on patients’ survival. In conclusion, our data show that balance between lipid species is a phenotypic marker of the diversity of leukemic cells that significantly influences their proliferation and resistance to stress, and thereby, the prognosis of AML patients
    corecore