258 research outputs found

    Time’s Up! Involvement of Metamemory Knowledge, Executive Functions, and Time Monitoring in Children’s Prospective Memory Performance

    Full text link
    This study examined time-based prospective memory (PM) in children and explored the possible involvement of metamemory knowledge and executive functions in the use of an appropriate time monitoring strategy depending on the ongoing task’s difficulty. Specifically, a sample of 72 typically developing children aged 4, 6, and 9 years old were given an original PM paradigm composed of both an ongoing procedural activity and a PM task. Half of the participants (expert group) were trained in the ongoing activity before the prospective test. As expected, results show that time monitoring had a positive effect on children’s PM performance. Furthermore, mediation analyses reveal that strategic time monitoring was predicted by metamemory knowledge in the expert group but only by executive functions in the novice group. Overall, these findings provide interesting avenues to explain how metamemory knowledge, strategy use, and executive functions interact to improve PM performance during childhood

    Éloi Laurent, 2011, Social-Écologie, Paris, Flammarion, p. 226.

    Get PDF
    L’ouvrage d’Éloi Laurent, économiste senior au Département des Études et conseiller scientifique de l’Observatoire Français des Conjonctures Économiques (OFCE), se propose d’interroger, par le biais des inégalités, la conciliation entre les objectifs d’éradication de la pauvreté et ceux de la préservation de la biodiversité. Pour cela, l’auteur mobilise des lectures macro-sociale (p. 69 ; p. 180) et micro-sociale (p. 115 ; p. 77) des territoires. Ces échelles contribuent à rendre visibles les..

    Intact procedural motor sequence learning in developmental coordination disorder

    Full text link
    The purpose of the present study was to explore the possibility of a procedural learning deficit among children with developmental coordination disorder (DCD). We tested 34 children aged 6–12 years with and without DCD using the serial reaction time task, in which the standard keyboard was replaced by a touch screen in order to minimize the impact of perceptuomotor coordination difficulties that characterize this disorder. The results showed that children with DCD succeed as well as control children at the procedural sequence learning task. These findings challenge the hypothesis that a procedural learning impairment underlies the difficulties of DCD children in acquiring and automatizing daily activities. We suggest that the previously reported impairment of children with DCD on the serial reaction time task is not due to a sequence learning deficit per se, but rather due to methodological factors such as the response mode used in these studies.Peer reviewe

    Predicting Long-Term Recovery of Consciousness in Prolonged Disorders of Consciousness Based on Coma Recovery Scale-Revised Subscores: Validation of a Machine Learning-Based Prognostic Index.

    Full text link
    peer reviewedPrognosis of prolonged Disorders of Consciousness (pDoC) is influenced by patients' clinical diagnosis and Coma Recovery Scale-Revised (CRS-R) total score. We compared the prognostic accuracy of a novel Consciousness Domain Index (CDI) with that of clinical diagnosis and CRS-R total score, for recovery of full consciousness at 6-, 12-, and 24-months post-injury. The CDI was obtained by a combination of the six CRS-R subscales via an unsupervised machine learning technique. We retrospectively analyzed data on 143 patients with pDoC (75 in Minimally Conscious State; 102 males; median age = 53 years; IQR = 35; time post-injury = 1-3 months) due to different etiologies enrolled in an International Brain Injury Association Disorders of Consciousness Special Interest Group (IBIA DoC-SIG) multicenter longitudinal study. Univariate and multivariate analyses were utilized to assess the association between outcomes and the CDI, compared to clinical diagnosis and CRS-R. The CDI, the clinical diagnosis, and the CRS-R total score were significantly associated with a good outcome at 6, 12 and 24 months. The CDI showed the highest univariate prediction accuracy and sensitivity, and regression models including the CDI provided the highest values of explained variance. A combined scoring system of the CRS-R subscales by unsupervised machine learning may improve clinical ability to predict recovery of consciousness in patients with pDoC

    Risk factors for 2-year mortality in patients with prolonged disorders of consciousness: An international multicentre study.

    Full text link
    peer reviewedBACKGROUND AND PURPOSE: Patients with prolonged disorders of consciousness (pDoC) have a high mortality rate due to medical complications. Because an accurate prognosis is essential for decision-making on patients' management, we analysed data from an international multicentre prospective cohort study to evaluate 2-year mortality rate and bedside predictors of mortality. METHODS: We enrolled adult patients in prolonged vegetative state/unresponsive wakefulness syndrome (VS/UWS) or minimally conscious state (MCS) after traumatic and nontraumatic brain injury within 3 months postinjury. At enrolment, we collected demographic (age, sex), anamnestic (aetiology, time postinjury), clinical (Coma Recovery Scale-Revised [CRS-R], Disability Rating Scale, Nociception Coma Scale-Revised), and neurophysiologic (electroencephalogram [EEG], somatosensory evoked and event-related potentials) data. Patients were followed up to gather data on mortality up to 24 months postinjury. RESULTS: Among 143 traumatic (n = 55) and nontraumatic (n = 88) patients (VS/UWS, n = 68, 19 females; MCS, n = 75, 22 females), 41 (28.7%) died within 24 months postinjury. Mortality rate was higher in VS/UWS (42.6%) than in MCS (16%; p < 0.001). Multivariate regression in VS/UWS showed that significant predictors of mortality were older age and lower CRS-R total score, whereas in MCS female sex and absence of alpha rhythm on EEG at study entry were significant predictors. CONCLUSIONS: This study demonstrated that a feasible multimodal assessment in the postacute phase can help clinicians to identify patients with pDoC at higher risk of mortality within 24 months after brain injury. This evidence can help clinicians and patients' families to navigate the complex clinical decision-making process and promote an international standardization of prognostic procedures for patients with pDoC

    DMTs and Covid-19 severity in MS: a pooled analysis from Italy and France

    Get PDF
    We evaluated the effect of DMTs on Covid-19 severity in patients with MS, with a pooled-analysis of two large cohorts from Italy and France. The association of baseline characteristics and DMTs with Covid-19 severity was assessed by multivariate ordinal-logistic models and pooled by a fixed-effect meta-analysis. 1066 patients with MS from Italy and 721 from France were included. In the multivariate model, anti-CD20 therapies were significantly associated (OR&nbsp;=&nbsp;2.05, 95%CI&nbsp;=&nbsp;1.39–3.02, p&nbsp;&lt;&nbsp;0.001) with Covid-19 severity, whereas interferon indicated a decreased risk (OR&nbsp;=&nbsp;0.42, 95%CI&nbsp;=&nbsp;0.18–0.99, p&nbsp;=&nbsp;0.047). This pooled-analysis confirms an increased risk of severe Covid-19 in patients on anti-CD20 therapies and supports the protective role of interferon

    The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer

    Get PDF
    Abstract: Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM−/− patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors

    Machine learning algorithms performed no better than regression models for prognostication in traumatic brain injury

    Get PDF
    Objective: We aimed to explore the added value of common machine learning (ML) algorithms for prediction of outcome for moderate and severe traumatic brain injury. Study Design and Setting: We performed logistic regression (LR), lasso regression, and ridge regression with key baseline predictors in the IMPACT-II database (15 studies, n = 11,022). ML algorithms included support vector machines, random forests, gradient boosting machines, and artificial neural networks and were trained using the same predictors. To assess generalizability of predictions, we performed internal, internal-external, and external validation on the recent CENTER-TBI study (patients with Glasgow Coma Scale <13, n = 1,554). Both calibration (calibration slope/intercept) and discrimination (area under the curve) was quantified. Results: In the IMPACT-II database, 3,332/11,022 (30%) died and 5,233(48%) had unfavorable outcome (Glasgow Outcome Scale less than 4). In the CENTER-TBI study, 348/1,554(29%) died and 651(54%) had unfavorable outcome. Discrimination and calibration varied widely between the studies and less so between the studied algorithms. The mean area under the curve was 0.82 for mortality and 0.77 for unfavorable outcomes in the CENTER-TBI study. Conclusion: ML algorithms may not outperform traditional regression approaches in a low-dimensional setting for outcome prediction after moderate or severe traumatic brain injury. Similar to regression-based prediction models, ML algorithms should be rigorously validated to ensure applicability to new populations
    corecore