39 research outputs found

    Experiment and theory confirm that UV laser photodissociation spectroscopy can distinguish protomers formed via electrospray

    Get PDF
    The identification of protonation sites in electrosprayed molecules remains a challenge in contemporary physical science. We present the first demonstration that low-resolution, UV laser photodissociation spectroscopy can be applied in situ to identify the protomers of para-aminobenzoic acid (PABA) formed via electrospray from a single solution. Electronic absorption spectra are recorded via photodepletion and photofragmentation for PABA electrosprayed from solutions of water and acetonitrile. Using this approach, two protomers can be straightforwardly identified, with only the carboxylic acid protomer being produced on electrospray from water while the amine-protonated isomer dominates upon electrospray from acetonitrile. High-level SORCI and MRCI calculations are presented to provide insight into the origin of the distinctive electronic spectra displayed by the protomers. Our results are in excellent agreement with previous PABA studies conducted using established techniques, and demonstrate that UV photodissociation spectroscopy of electrosprayed ions has potential as a new diagnostic tool for identifying protomeric species

    UV laser photoactivation of hexachloroplatinate bound to individual nucleobases : In vacuo as molecular level probes of a model photopharmaceutical

    Get PDF
    Isolated molecular clusters of adenine, cytosine, thymine and uracil bound to hexachloroplatinate, PtCl6 2-, have been studied using laser electronic photodissociation spectroscopy to investigate photoactivation of a platinum complex in the vicinity of a nucleobase. These metal complex-nucleobase clusters represent model systems for identifying the fundamental photochemical processes occurring in photodynamic platinum drug therapies that target DNA. This is the first study to explore the specific role of a strongly photoactive platinum compound in the aggregate complex. Each of the clusters studied displays a broadly similar absorption spectra, with a strong λmax ∼ 4.6 eV absorption band and a subsequent increase in the absorption intensity towards higher spectral-energy. The absorption bands are traced to ligand-to-metal-charge-transfer excitations on the PtCl6 2- moiety within the cluster, and result in Cl-·nucleobase and PtCl5 - as primary photofragments. These results demonstrate how selective photoexcitation can drive distinctive photodecay channels for a model photo-pharmaceutical. In addition, cluster absorption due to excitation of nucleobase-centred chromophores is observed in the region around 5 eV. For the uracil cluster, photofragments consistent with ultrafast decay of the excited state and vibrational predissociation on the ground-state surface are observed. However, this decay channel becomes successively weaker on going from thymine to cytosine to adenine, due to differential coupling of the excited states to the electron detachment continuum. These effects demonstrate the distinctive photophysical characteristics of the different nucleobases, and are discussed in the context of the recently recorded photoelectron spectra of theses clusters

    Photoexcitation of Adenosine 5'-Triphosphate Anions in Vacuo : Probing the Influence of Charge State on the UV Photophysics of Adenine

    Get PDF
    We report the first UV laser photodissociation spectra (4.0-5.8 eV) of gas-phase deprotonated adenosine 5'-triphosphate, diphosphate and monophosphate anions. The photodepletion spectra of these anions display strong absorption bands across the region of 4.6-5.2 eV, consistent with excitation of a primarily adenine-centered π-π* transition. The spectra appear insensitive to the charge of the species (i.e., the spectrum of [ATP-2H](2-) closely resembles that of [ATP-H](-)), while the spectral profile is affected to a greater extent by the variation of the molecular structure, i.e. the [AMP-H](-) and [ADP-H](-) photodepletion spectra display similar profiles while the [ATP-H](-) spectrum is distinctive. The photodepletion cross-section also decreases for the ATP anions compared to both the AMP and ADP anions, reflecting a high intrinsic photostability of ATP versus both AMP and ADP. A range of photofragments are produced across the 4.0-5.8 eV spectral range for all of the ATP analogues studied. These fragments are primarily associated with fragmentation on the ground-state electronic surface, indicative of a statistical decay process where ultrafast decay is followed by ergodic dissociation. However, while the photofragments observed following photoexcitation of the monoanionic species, [AMP-H](-) to [ADP-H](-) to [ATP-H](-) are entirely consistent with statistical decay, an additional group of photofragments are observed for the dianionic species, [ADP-2H](2-) and [ATP-2H](2-), that we associate with electron detachment, and subsequent fragmentation of the resulting electron-detached photofragment. TDDFT calculations are presented to support the interpretation of the experimental data, and confirm that the electronic structure of the adenine moiety is relatively unperturbed by varying the overall charge

    Near-threshold electron transfer in anion-nucleobase clusters : Does the identity of the anion matter?

    Get PDF
    Laser dissociation spectroscopy of I − ·adenine (I − ·A) and H 2 PO − 3 ·adenine (H 2 PO − 3 ·A) has been utilised for the first time to explore how the anion identity impacts on the excited states. Despite strong photodepletion, ionic photofragmentation is weak for both clusters, revealing that they decay predominantly by electron detachment. The spectra of I − ·A display a prominent dipole-bound excited state in the region of the detachment energy which relaxes to produce deprotonated adenine. In contrast, near-threshold photoexcitation of H 2 PO − 3 ·A does not access a dipole-bound state, but instead displays photofragmentation properties associated with ultrafast decay of an adenine-localised π→π* transition. Notably, the experimental electron detachment onset of H 2 PO − 3 ·A is around 4.7 eV, which is substantially lower than the expected detachment energy of an ion-dipole complex. The low value for H 2 PO − 3 ·A can be traced to initial ionisation of the adenine followed by significant geometric rearrangement on the neutral surface. We conclude that these dynamics quench access to a dipole-bound excited state for H 2 PO − 3 ·A and subsequent electron transfer. H 2 PO − 3 ·A represents an important new example of an ionic cluster where ionisation occurs from the neutral cluster component and where photodetachment initiates intra-molecular hydrogen atom transfer

    Probing the electronic relaxation pathways and photostability of the synthetic nucleobase Z via laser interfaced mass spectrometry.

    Get PDF
    The photostability of synthetic (unnatural) nucleobases is important in establishing the integrity of new genetic alphabets, and critical for developing healthy semisynthetic organisms. Here, we report the first study to explore the photostability and electronic decay pathways of the synthetic nucleobase, Z (6-amino-5-nitro-2(1 H)-pyridone), combining UV laser photodissociation and collisional dissociation measurements to characterise the decay pathways across the region from 3.1-4.9 eV. Photoexcitation across this region produced the m/ z 138 ion as the dominant photofragment, mirroring the dominant fragment produced upon higher-energy collisional excitation. Analysis of the ion-yield production curve profile for the m/ z 138 ion indicates that it is produced following ultrafast excited state decay with boil off of the OH functional group of Z from the hot electronic ground state. Electronic structure calculations provide physical insight into why this is the dominant fragmentation pathway, since a node in the electron density along the C-OH bond is found for all tautomers of Z. While the dominant decay pathway for Z is consistent with ultrafast excited state decay, we also identify several minor dissociative photochemistry decay pathways, associated with intrinsic photoinstability. The results presented here can be used to guide the development of more photostable synthetic nucleobases

    Photodissociation dynamics of the iodide-uracil (I-U) complex

    Get PDF
    Photofragment action spectroscopy and femtosecond time-resolved photoelectron imaging are utilized to probe the dissociation channels in iodide-uracil (I− ⋅ U) binary clusters upon photoexcitation. The photofragment action spectra show strong I− and weak [U- H]− ion signal upon photoexcitation. The action spectra show two bands for I− and [U- H]− production peaking around 4.0 and 4.8 eV. Time-resolved experiments measured the rate of I− production resulting from excitation of the two bands. At 4.03 eV and 4.72 eV, the photoelectron signal from I− exhibits rise times of 86 ± 7 ps and 36 ± 3 ps, respectively. Electronic structure calculations indicate that the lower energy band, which encompasses the vertical detachment energy (4.11 eV) of I−U, corresponds to excitation of a dipole-bound state of the complex, while the higher energy band is primarily a π-π∗ excitation on the uracil moiety. Although the nature of the two excited states is very different, the long lifetimes for I− production suggest that this channel results from internal conversion to the I− ⋅ U ground state followed by evaporation of I−. This hypothesis was tested by comparing the dissociation rates to Rice-Ramsperger-Kassel-Marcus calculations

    On the Stability of IrCl 6

    No full text

    Photoinitiation of Gas-Phase S N

    No full text

    Mapping the UV Photophysics of Platinum Metal Complexes Bound to Nucleobases: Laser Spectroscopy of Isolated Uracil·Pt(CN)<sub>4</sub><sup>2–</sup> and Uracil·Pt(CN)<sub>6</sub><sup>2–</sup> Complexes

    No full text
    We report the first UV laser spectroscopic study of isolated gas-phase complexes of platinum metal complex anions bound to a nucleobase as model systems for exploring at the molecular level the key photophysical processes involved in photodynamic therapy. Spectra of the Pt<sup>IV</sup>(CN)<sub>6</sub><sup>2–</sup>·Ur and Pt<sup>II</sup>(CN)<sub>4</sub><sup>2–</sup>·Ur complexes were acquired across the 220–320 nm range using mass-selective photodepletion and photofragment action spectroscopy. The spectra of both complexes reveal prominent UV absorption bands (λ<sub>max</sub> = 4.90 and 4.70 eV) that we assign primarily to excitation of the Ur π–π* localized chromophore. Distinctive UV photofragmentation products are observed for the complexes, with Pt<sup>IV</sup>(CN)<sub>6</sub><sup>2–</sup>·Ur photoexcitation resulting in complex fission, while Pt<sup>II</sup>(CN)<sub>4</sub><sup>2–</sup>·Ur photoexcitation initiates a nucleobase proton-transfer reaction across 4.4–5.2 eV and electron detachment above 5.2 eV. The observed photofragments are consistent with ultrafast decay of a Ur localized excited state back to the electronic ground state followed by intramolecular vibrational relaxation and ergodic complex fragmentation
    corecore