545 research outputs found
Recommended from our members
Epidemic dynamics of respiratory syncytial virus in current and future climates.
A key question for infectious disease dynamics is the impact of the climate on future burden. Here, we evaluate the climate drivers of respiratory syncytial virus (RSV), an important determinant of disease in young children. We combine a dataset of county-level observations from the US with state-level observations from Mexico, spanning much of the global range of climatological conditions. Using a combination of nonlinear epidemic models with statistical techniques, we find consistent patterns of climate drivers at a continental scale explaining latitudinal differences in the dynamics and timing of local epidemics. Strikingly, estimated effects of precipitation and humidity on transmission mirror prior results for influenza. We couple our model with projections for future climate, to show that temperature-driven increases to humidity may lead to a northward shift in the dynamic patterns observed and that the likelihood of severe outbreaks of RSV hinges on projections for extreme rainfall
APOBEC3G and APOBEC3F Act in Concert To Extinguish HIV-1 Replication
ABSTRACT The multifunctional HIV-1 accessory protein Vif counters the antiviral activities of APOBEC3G (A3G) and APOBEC3F (A3F), and some Vifs counter stable alleles of APOBEC3H (A3H). Studies in humanized mice have shown that HIV-1 lacking Vif expression is not viable. Here, we look at the relative contributions of the three APOBEC3s to viral extinction. Inoculation of bone marrow/liver/thymus (BLT) mice with CCR5-tropic HIV-1 JRCSF (JRCSF) expressing a vif gene inactive for A3G but not A3F degradation activity (JRCSFvifH42/43D) displayed either no or delayed replication. JRCSF expressing a vif gene mutated to inactivate A3F degradation but not A3G degradation (JRCSFvifW79S) always replicated to high viral loads with variable delays. JRCSF with vif mutated to lack both A3G and A3F degradation activities (JRCSFvifH42/43DW79S) failed to replicate, mimicking JRCSF without Vif expression (JRCSFΔvif). JRCSF and JRCSFvifH42/43D, but not JRCSFvifW79S or JRCSFvifH42/43DW79S, degraded APOBEC3D. With one exception, JRCSFs expressing mutant Vifs that replicated acquired enforced vif mutations. These mutations partially restored A3G or A3F degradation activity and fully replaced JRCSFvifH42/43D or JRCSFvifW79S by 10 weeks. Surprisingly, induced mutations temporally lagged behind high levels of virus in blood. In the exceptional case, JRCSFvifH42/43D replicated after a prolonged delay with no mutations in vif but instead a V27I mutation in the RNase H coding sequence. JRCSFvifH42/43D infections exhibited massive GG/AG mutations in pol viral DNA, but in viral RNA, there were no fixed mutations in the Gag or reverse transcriptase coding sequence. A3H did not contribute to viral extinction but, in combination with A3F, could delay JRCSF replication. A3H was also found to hypermutate viral DNA. IMPORTANCE Vif degradation of A3G and A3F enhances viral fitness, as virus with even a partially restored capacity for degradation outgrows JRCSFvifH42/43D and JRCSFvifW79S. Unexpectedly, fixation of mutations that replaced H42/43D or W79S in viral RNA lagged behind the appearance of high viral loads. In one exceptional JRCSFvifH42/43D infection, vif was unchanged but replication proceeded after a long delay. These results suggest that Vif binds and inhibits the non-cytosine deaminase activities of intact A3G and intact A3F, allowing JRCSFvifH42/43D and JRCSFvifW79S to replicate with reduced fitness. Subsequently, enhanced Vif function is acquired by enforced mutations. In infected cells, JRCSFΔvif and JRCSFvifH42/43DW79S are exposed to active A3F and A3G and fail to replicate. JRCSFvifH42/43D Vif degrades A3F and, in some cases, overcomes A3G mutagenic activity to replicate. Vif may have evolved to inhibit A3F and A3G by stoichiometric binding and subsequently acquired the ability to target these proteins to proteasomes
Recommended from our members
Assessing Neuronal and Astrocyte Derived Exosomes From Individuals With Mild Traumatic Brain Injury for Markers of Neurodegeneration and Cytotoxic Activity.
Mild traumatic brain injury (mTBI) disproportionately affects military service members and is very difficult to diagnose. To-date, there is currently no blood-based, diagnostic biomarker for mTBI cases with persistent post concussive symptoms. To examine the potential of neuronally-derived (NDE) and astrocytic-derived (ADE) exosome cargo proteins as biomarkers of chronic mTBI in younger adults, we examined plasma exosomes from a prospective longitudinal study of combat-related risk and resilience, marine resiliency study II (MRSII). After return from a combat-deployment participants were interviewed to assess TBI exposure while on deployment. Plasma exosomes from military service members with mTBI (mean age, 21.7 years, n = 19, avg. days since injury 151), and age-matched, controls (deployed service members who did not endorse a deployment-related TBI or a pre-deployment history of TBI; mean age, 21.95 years, n = 20) were precipitated and enriched against a neuronal adhesion protein, L1-CAM, and an astrocyte marker, glutamine aspartate transporter (GLAST) using magnetic beads to immunocapture the proteins and subsequently selected by fluorescent activated cell sorting (FACS). Extracted protein cargo from NDE and ADE preparations were quantified for protein levels implicated in TBI neuropathology by standard ELISAs and on the ultra-sensitive single molecule assay (Simoa) platform. Plasma NDE and ADE levels of Aβ42 were significantly higher while plasma NDE and ADE levels of the postsynaptic protein, neurogranin (NRGN) were significantly lower in participants endorsing mTBI exposure compared to controls with no TBI history. Plasma NDE and ADE levels of Aβ40, total tau, and neurofilament light (NFL), P-T181-tau, P-S396-tau were either undetectable or not significantly different between the two groups. In an effort to understand the pathogenetic potential of NDE and ADE cargo proteins, neuron-like cultures were treated with NDE and ADE preparations from TBI and non-TBI groups. Lastly, we determined that plasma NDE but not ADE cargo proteins from mTBI samples were found to be toxic to neuron-like recipient cells in vitro. These data support the presence of markers of neurodegeneration in NDEs of mTBI and suggest that these NDEs can be used as tools to identify pathogenic mechanisms of TBI
Localized Heating Near a Rigid Spherical Inclusion in a Viscoelastic Binder Material Under Compressional Plane Wave Excitation
High-frequency mechanical excitation has been shown to generate heat within composite energetic materials and even induce reactions in single energetic crystals embedded within an elastic binder. To further the understanding of how wave scattering effects attributable to the presence of an energetic crystal can result in concentrated heating near the inclusion, an analytical model is developed. The stress and displacement solutions associated with the scattering of compressional plane waves by a spherical obstacle (Pao and Mow, 1963, “Scattering of Plane Compressional Waves by a Spherical Obstacle,” J. Appl. Phys., 34(3), pp. 493–499) are modified to account for the viscoelastic effects of the lossy media surrounding the inclusion (Gaunaurd and Uberall, 1978, “Theory of Resonant Scattering From Spherical Cavities in Elastic and Viscoelastic Media,” J. Acoust. Soc. Am., 63(6), pp. 1699–1712). The results from this solution are then utilized to estimate the spatial heat generation due to the harmonic straining of the material, and the temperature field of the system is predicted for a given duration of time. It is shown that for certain excitation and sample configurations, the elicited thermal response near the inclusion may approach, or even exceed, the decomposition temperatures of various energetic materials. Although this prediction indicates that viscoelastic heating of the binder may initiate decomposition of the crystal even in the absence of defects such as initial voids or debonding between the crystal and binder, the thermal response resulting from this bulk heating phenomenon may be a precursor to dynamic events associated with such crystal-scale effects
HIV pre-exposure prophylaxis for women and infants prevents vaginal and oral HIV transmission in a preclinical model of HIV infection
Approximately 1.5 million HIV-positive women become pregnant annually. Without treatment, up to 45% will transmit HIV to their infants, primarily through breastfeeding. These numbers highlight that HIV acquisition is a major health concern for women and children globally. They also emphasize the urgent need for novel approaches to prevent HIV acquisition that are safe, effective and convenient to use by women and children in places where they are most needed
A long-acting formulation of the integrase inhibitor raltegravir protects humanized BLT mice from repeated high-dose vaginal HIV challenges
Pre-exposure prophylaxis (PrEP) using antiretroviral drugs (ARVs) has been shown to reduce HIV transmission in people at high risk of HIV infection. Adherence to PrEP strongly correlates with the level of HIV protection. Long-acting injectable ARVs provide sustained systemic drug exposures over many weeks and can improve adherence due to infrequent parenteral administration. Here, we evaluated a new long-acting formulation of raltegravir for prevention of vaginal HIV transmission
Trypanosoma brucei aquaglyceroporin 2 is a high-affinity transporter for pentamidine and melaminophenyl arsenic drugs and the main genetic determinant of resistance to these drugs.
OBJECTIVES: Trypanosoma brucei drug transporters include the TbAT1/P2 aminopurine transporter and the high-affinity pentamidine transporter (HAPT1), but the genetic identity of HAPT1 is unknown. We recently reported that loss of T. brucei aquaglyceroporin 2 (TbAQP2) caused melarsoprol/pentamidine cross-resistance (MPXR) in these parasites and the current study aims to delineate the mechanism by which this occurs. METHODS: The TbAQP2 loci of isogenic pairs of drug-susceptible and MPXR strains of T. brucei subspecies were sequenced. Drug susceptibility profiles of trypanosome strains were correlated with expression of mutated TbAQP2 alleles. Pentamidine transport was studied in T. brucei subspecies expressing TbAQP2 variants. RESULTS: All MPXR strains examined contained TbAQP2 deletions or rearrangements, regardless of whether the strains were originally adapted in vitro or in vivo to arsenicals or to pentamidine. The MPXR strains and AQP2 knockout strains had lost HAPT1 activity. Reintroduction of TbAQP2 in MPXR trypanosomes restored susceptibility to the drugs and reinstated HAPT1 activity, but did not change the activity of TbAT1/P2. Expression of TbAQP2 sensitized Leishmania mexicana promastigotes 40-fold to pentamidine and >1000-fold to melaminophenyl arsenicals and induced a high-affinity pentamidine transport activity indistinguishable from HAPT1 by Km and inhibitor profile. Grafting the TbAQP2 selectivity filter amino acid residues onto a chimeric allele of AQP2 and AQP3 partly restored susceptibility to pentamidine and an arsenical. CONCLUSIONS: TbAQP2 mediates high-affinity uptake of pentamidine and melaminophenyl arsenicals in trypanosomes and TbAQP2 encodes the previously reported HAPT1 activity. This finding establishes TbAQP2 as an important drug transporter
Management and outcomes of women with low fibrinogen concentration during pregnancy or immediately postpartum: A UK national population‐based cohort study
Introduction: Pregnant women with a fibrinogen level <2 g/L represent a high‐risk group that is associated with severe postpartum hemorrhage and other complications. Women who would qualify for fibrinogen therapy are not yet identified. Material and methods: A population‐based cross‐sectional study was conducted using the UK Obstetric Surveillance System between November 2017 and October 2018 in any UK hospital with a consultant‐led maternity unit. Any woman pregnant or immediately postpartum with a fibrinogen <2 g/L was included. Our aims were to determine the incidence of fibrinogen <2 g/L in pregnancy, and to describe its causes, management and outcomes. Results: Over the study period 124 women with fibrinogen <2 g/L were identified (1.7 per 10 000 maternities; 95% confidence interval 1.4–2.0 per 10 000 maternities). Less than 5% of cases of low fibrinogen were due to preexisting inherited dysfibrinogenemia or hypofibrinogenemia. Sixty percent of cases were due to postpartum hemorrhage caused by placental abruption, atony, or trauma. Amniotic fluid embolism and placental causes other than abruption (previa, accreta, retention) were associated with the highest estimated blood loss (median 4400 mL) and lowest levels of fibrinogen. Mortality was high with two maternal deaths due to massive postpartum hemorrhage, 27 stillbirths, and two neonatal deaths. Conclusions: Fibrinogen <2 g/L often, but not exclusively, affected women with postpartum hemorrhage due to placental abruption, atony, or trauma. Other more rare and catastrophic obstetrical events such as amniotic fluid embolism and placenta accreta also led to low levels of fibrinogen. Maternal and perinatal mortality was extremely high in our cohort
The effects of cognitive-linguistic interventions to treat aphasia in the first 90 days post-stroke: A systematic review
Background: Cognitive-linguistic interventions for aphasia are behavioural-based approaches to therapy that aim to treat language impairment skills post-acquired brain injury. The purpose of cognitive-linguistic intervention is to restore and rehabilitate language impairment skills through targeting phonologic, semantic and syntactic systems, which may support goals to improve everyday communication. Aims: The aim of this systematic review was to investigate the effects of cognitive-linguistic interventions on language processing for aphasia in the first 90 days post-stroke. Secondary aims include the investigation of the effects of these interventions on functional communication and quality of life. Methods: A systematic search was conducted across six databases. Twenty-one studies met the predefined eligibility criteria and were included in the review. Studies were rated for methodological quality and data extracted. A narrative synthesis was completed and conducted for all included studies. Four studies were suitable for meta-analysis. Main Contribution: Evidence for the effects of cognitive-linguistic intervention for aphasia in the first 90 days post-stroke is inconclusive. Intervention approaches included constraint-induced intervention, melodic intonation therapy and study specific cognitive-linguistic intervention. Multiple studies investigated the use of computers as a mode of intervention delivery or to increase the frequency of intervention or session duration. Improvement on language outcomes was associated with positive effects on functional communication, regardless of the specific intervention. There were mixed results for quality-of-life outcomes. Conclusions: Further research is required to guide aphasia intervention the first 90 days post stroke, a time critical period for recovery and rehabilitation. Research reports should include adequate description of participant characteristics and consistent use of intervention protocols and outcome measures. Providing a clear description of theoretical underpinnings and detailed information regarding the components of intervention will also facilitate future research synthesis
- …