12 research outputs found
Low-Dose Nitric Oxide as Targeted Anti-biofilm Adjunctive Therapy to Treat Chronic Pseudomonas aeruginosa Infection in Cystic Fibrosis
Despite aggressive antibiotic therapy, bronchopulmonary colonization by Pseudomonas aeruginosa causes persistent morbidity and mortality in cystic fibrosis (CF). Chronic P. aeruginosa infection in the CF lung is associated with structured, antibiotic-tolerant bacterial aggregates known as biofilms. We have demonstrated the effects of non-bactericidal, low-dose nitric oxide (NO), a signaling molecule that induces biofilm dispersal, as a novel adjunctive therapy for P. aeruginosa biofilm infection in CF in an ex vivo model and a proof-of-concept double-blind clinical trial. Submicromolar NO concentrations alone caused disruption of biofilms within ex vivo CF sputum and a statistically significant decrease in ex vivo biofilm tolerance to tobramycin and tobramycin combined with ceftazidime. In the 12-patient randomized clinical trial, 10 ppm NO inhalation caused significant reduction in P. aeruginosa biofilm aggregates compared with placebo across 7 days of treatment. Our results suggest a benefit of using low-dose NO as adjunctive therapy to enhance the efficacy of antibiotics used to treat acute P. aeruginosa exacerbations in CF. Strategies to induce the disruption of biofilms have the potential to overcome biofilm-associated antibiotic tolerance in CF and other biofilm-related diseases
Natural history and outcomes in paediatric RASopathy-associated hypertrophic cardiomyopathy
Aims: This study aimed to describe the natural history and predictors of all-cause mortality and sudden cardiac death (SCD)/equivalent events in children with a RASopathy syndrome and hypertrophic cardiomyopathy (HCM). Methods and results: This is a retrospective cohort study from 14 paediatric cardiology centres in the United Kingdom and Ireland. We included children <18 years with HCM and a clinical and/or genetic diagnosis of a RASopathy syndrome [Noonan syndrome (NS), NS with multiple lentigines (NSML), Costello syndrome (CS), cardiofaciocutaneous syndrome (CFCS), and NS with loose anagen hair (NS-LAH)]. One hundred forty-nine patients were recruited [111 (74.5%) NS, 12 (8.05%) NSML, 6 (4.03%) CS, 6 (4.03%) CFCS, 11 (7.4%) Noonan-like syndrome, and 3 (2%) NS-LAH]. NSML patients had higher left ventricular outflow tract (LVOT) gradient values [60 (36–80) mmHg, P = 0.004]. Over a median follow-up of 197.5 [inter-quartile range (IQR) 93.58–370] months, 23 patients (15.43%) died at a median age of 24.1 (IQR 5.6–175.9) months. Survival was 96.45% [95% confidence interval (CI) 91.69–98.51], 90.42% (95% CI 84.04–94.33), and 84.12% (95% CI 75.42–89.94) at 1, 5, and 10 years, respectively, but this varied by RASopathy syndrome. RASopathy syndrome, symptoms at baseline, congestive cardiac failure (CCF), non-sustained ventricular tachycardia (NSVT), and maximal left ventricular wall thickness were identified as predictors of all-cause mortality on univariate analysis, and CCF, NSVT, and LVOT gradient were predictors for SCD or equivalent event. Conclusions: These findings highlight a distinct category of patients with Noonan-like syndrome with a milder HCM phenotype but significantly worse survival and identify potential predictors of adverse outcome in patients with RASopathy-related HCM
The relationship between maximal left ventricular wall thickness and sudden cardiac death in childhood onset hypertrophic cardiomyopathy
Background:
Maximal left ventricular wall thickness (MLVWT) is a risk factor for sudden cardiac death (SCD) in hypertrophic cardiomyopathy (HCM). In adults, the severity of left ventricular hypertrophy has a nonlinear relationship with SCD, but it is not known whether the same complex relationship is seen in childhood. The aim of this study was to describe the relationship between left ventricular hypertrophy and SCD risk in a large international pediatric HCM cohort.
Methods:
The study cohort comprised 1075 children (mean age, 10.2 years [±4.4]) diagnosed with HCM (1–16 years) from the International Paediatric Hypertrophic Cardiomyopathy Consortium. Anonymized, noninvasive clinical data were collected from baseline evaluation and follow-up, and 5-year estimated SCD risk was calculated (HCM Risk-Kids).
Results:
MLVWT Z score was <10 in 598 (58.1%), ≥10 to <20 in 334 (31.1%), and ≥20 in 143 (13.3%). Higher MLVWT Z scores were associated with heart failure symptoms, unexplained syncope, left ventricular outflow tract obstruction, left atrial dilatation, and nonsustained ventricular tachycardia. One hundred twenty-two patients (71.3%) with MLVWT Z score ≥20 had coexisting risk factors for SCD. Over a median follow-up of 4.9 years (interquartile range, 2.3–9.3), 115 (10.7%) had an SCD event. Freedom from SCD event at 5 years for those with MLVWT Z scores <10, ≥10 to <20, and ≥20 was 95.6%, 87.4%, and 86.0, respectively. The estimated SCD risk at 5 years had a nonlinear, inverted U-shaped relationship with MLVWT Z score, peaking at Z score +23. The presence of coexisting risk factors had a summative effect on risk.
Conclusions:
In children with HCM, an inverted U-shaped relationship exists between left ventricular hypertrophy and estimated SCD risk. The presence of additional risk factors has a summative effect on risk. While MLVWT is important for risk stratification, it should not be used either as a binary variable or in isolation to guide implantable cardioverter defibrillator implantation decisions in children with HCM
Clinical Features and Natural History of Preadolescent Nonsyndromic Hypertrophic Cardiomyopathy
BACKGROUND Up to one-half of childhood sarcomeric hypertrophic cardiomyopathy (HCM) presents before the age of 12 years, but this patient group has not been systematically characterized. OBJECTIVES The aim of this study was to describe the clinical presentation and natural history of patients presenting with nonsyndromic HCM before the age of 12 years. METHODS Data from the International Paediatric Hypertrophic Cardiomyopathy Consortium on 639 children diagnosed with HCM younger than 12 years were collected and compared with those from 568 children diagnosed between 12 and 16 years. RESULTS At baseline, 339 patients (53.6%) had family histories of HCM, 132 (20.9%) had heart failure symptoms, and 250 (39.2%) were prescribed cardiac medications. The median maximal left ventricular wall thickness z-score was 8.7 (IQR: 5.3-14.4), and 145 patients (27.2%) had left ventricular outflow tract obstruction. Over a median follow-up period of 5.6 years (IQR: 2.3-10.0 years), 42 patients (6.6%) died, 21 (3.3%) underwent cardiac transplantation, and 69 (10.8%) had life-threatening arrhythmic events. Compared with those presenting after 12 years, a higher proportion of younger patients underwent myectomy (10.5% vs 7.2%; P = 0.045), but fewer received primary prevention implantable cardioverter-defibrillators (18.9% vs 30.1%; P = 0.041). The incidence of mortality or life-threatening arrhythmic events did not differ, but events occurred at a younger age. CONCLUSIONS Early-onset childhood HCM is associated with a comparable symptom burden and cardiac phenotype as in patients presenting later in childhood. Long-term outcomes including mortality did not differ by age of presentation, but patients presenting at younger than 12 years experienced adverse events at younger ages. (C) 2022 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation.Peer reviewe
Relationship Between Maximal Left Ventricular Wall Thickness and Sudden Cardiac Death in Childhood Onset Hypertrophic Cardiomyopathy
Background: Maximal left ventricular wall thickness (MLVWT) is a risk factor for sudden cardiac death (SCD) in hypertrophic cardiomyopathy (HCM). In adults, the severity of left ventricular hypertrophy has a nonlinear relationship with SCD, but it is not known whether the same complex relationship is seen in childhood. The aim of this study was to describe the relationship between left ventricular hypertrophy and SCD risk in a large international pediatric HCM cohort. Methods: The study cohort comprised 1075 children (mean age, 10.2 years [+/- 4.4]) diagnosed with HCM (1-16 years) from the International Paediatric Hypertrophic Cardiomyopathy Consortium. Anonymized, noninvasive clinical data were collected from baseline evaluation and follow-up, and 5-year estimated SCD risk was calculated (HCM Risk-Kids). Results: MLVWT Z score was = 10 to = 20 in 143 (13.3%). Higher MLVWT Z scores were associated with heart failure symptoms, unexplained syncope, left ventricular outflow tract obstruction, left atrial dilatation, and nonsustained ventricular tachycardia. One hundred twenty-two patients (71.3%) with MLVWT Z score >= 20 had coexisting risk factors for SCD. Over a median follow-up of 4.9 years (interquartile range, 2.3-9.3), 115 (10.7%) had an SCD event. Freedom from SCD event at 5 years for those with MLVWT Z scores = 10 to = 20 was 95.6%, 87.4%, and 86.0, respectively. The estimated SCD risk at 5 years had a nonlinear, inverted U-shaped relationship with MLVWT Z score, peaking at Z score +23. The presence of coexisting risk factors had a summative effect on risk. Conclusions: In children with HCM, an inverted U-shaped relationship exists between left ventricular hypertrophy and estimated SCD risk. The presence of additional risk factors has a summative effect on risk. While MLVWT is important for risk stratification, it should not be used either as a binary variable or in isolation to guide implantable cardioverter defibrillator implantation decisions in children with HCM.Peer reviewe
Influence of low-dose nitric oxide on mono- and mixed-species biofilms formed by bacteria isolated from cystic fibrosis patients
Cystic fibrosis (CF) is an autosomal recessive disorder. One of the characteristic hallmarks of the disease is infection of the lung. Over the life time of a CF patient, a number of pulmonary exacerbations occur which result in irreversible lung damage. Despite continuous treatment with antimicrobials, microorganisms continue to persist in the CF lung due to the formation of biofilms. The biofilm mode of growth can display up to a 1000x greater tolerance to antimicrobial treatments than their free living planktonic counterparts. Hence, anti-biofilm therapy strategies are required to break up these tolerant microbial communities. Nitric oxide (NO) is one of the proposed anti-biofilm therapies, which has been shown to successfully initiate biofilm dispersal of one of the most widely recognized CF pathogens, P. aeruginosa. The work in this thesis was undertaken to investigate the use of NO as a potential biofilm dispersing agent for the monospecies biofilms formed by other commonly identified CF microorganisms. The second chapter outlines the isolation of these microorganisms from CF sputum samples and describes the culture profiling results for the CF patient cohort sampled. The third results chapter examines the effect of NO on the monospecies biofilms formed the CF microorganisms isolated in chapter 2. A biofilm dispersal effect was not observed across a range of NO concentrations; however intriguingly there was an effect on biofilm cell viability for NO concentrations ≥ 100 pM. Chapter 4 outlines a mixed species biofilm model composed of CF isolates for P. aeruginosa and S. aureus and a method to recover and analyse genomic DNA from biofilms. Biofilm dispersal for this mixed species biofilm was not observed however a reduction in the S. aureus population fraction was noted. The work in Chapter 5 was undertaken to adapt a new fluorescence in situ hybridisation method CLASI-FISH for the identification of microorganisms within CF sputum
Antibiofilm efficacy of antibiotic-loaded synthetic calcium sulphate beads in a P. aeruginosa/S. aureus co-culture model for prosthetic infections
Bacterial biofilms play a key role in prosthetic infection (PI) pathogenesis. Establishment of the biofilm phenotype confers the bacteria with significant tolerance to systemic antibiotics and the host immune system meaning thorough debridement and prosthesis removal often remain the only possible course of treatment. Protection of the prosthesis and dead-space management may be achieved through the use of antibiotic loaded cements and beads to release high concentrations of antibiotics at the surgical site. The antibacterial and antibiofilm efficacy of these materials is poorly understood in the context of mixed species models, such as are often encountered clinically
A Novel Quantitative Real-Time PCR Diagnostic Assay for Fecal and Nasal Swab Detection of an Otariid Lungworm, \u3ci\u3eParafilaroides decorus\u3c/i\u3e
Parafilaroides decorus, also known as sea lion lungworm, is a metastrongyloid nematode that infects otariid hosts, such as the charismatic California sea lion, Zalophus californianus. P. decorus causes bronchointerstitial pneumonia, respiratory distress, reduced ability to swim, dive and hunt and as a result, increased mortality particularly in young animals. Respiratory disease is a leading cause of stranding and admission to rehabilitation centers on the Pacific coast. Low-coverage genomic sequencing of four P. decorus individuals analyzed through Galaxy\u27s RepeatExplorer identified a novel repeat DNA family we employed to design a sensitive quantitative PCR (qPCR) assay for diagnosing infections from fecal or sputum samples. The assay detects as little as 10 fg of P. decorus DNA and a linear regression model developed using a standard curve can be used to estimate the concentration of P. decorus DNA in a sample, ± 0.015 ng. This knowledge can be leveraged to estimate the level of parasite burden, which can be used to design improved treatments for animals in rehabilitation. Improved treatment of infections will aid in more animals being successfully released back into the wild
Whole genome sequencing and in vitro splice assays reveal genetic causes for inherited retinal diseases
Inherited retinal diseases (IRDs) are a major cause of visual impairment. These clinically heterogeneous disorders are caused by pathogenic variants in more than 270 genes. As 30–40% of cases remain genetically unexplained following conventional genetic testing, we aimed to obtain a genetic diagnosis in an IRD cohort in which the genetic cause was not found using whole-exome sequencing or targeted capture sequencing. We performed whole-genome sequencing (WGS) to identify causative variants in 100 unresolved cases. After initial prioritization, we performed an in-depth interrogation of all noncoding and structural variants in genes when one candidate variant was detected. In addition, functional analysis of putative splice-altering variants was performed using in vitro splice assays. We identified the genetic cause of the disease in 24 patients. Causative coding variants were observed in genes such as ATXN7, CEP78, EYS, FAM161A, and HGSNAT. Gene disrupting structural variants were also detected in ATXN7, PRPF31, and RPGRIP1. In 14 monoallelic cases, we prioritized candidate noncanonical splice sites or deep-intronic variants that were predicted to disrupt the splicing process based on in silico analyses. Of these, seven cases were resolved as they carried pathogenic splice defects. WGS is a powerful tool to identify causative variants residing outside coding regions or heterozygous structural variants. This approach was most efficient in cases with a distinct clinical diagnosis. In addition, in vitro splice assays provide important evidence of the pathogenicity of rare variants