1,548 research outputs found

    Investigating the impact of microbial interactions with geologic media on geophysical properties

    Get PDF
    The goals of this study were to investigate the effect of: (1) microbial metabolic byproducts, microbial growth, and biofilm formation on the low frequency electrical properties of porous media, (2) biofilm formation on acoustic wave properties, and (3) the natural electrical (self-potential) signatures associated with an in-situ biological permeable reactive barrier (PRB). The results suggest: (1) increases in electrolytic conductivity are consistent with increased concentrations of organic acids and biosurfactants; (2) mineral weathering promoted by organic acids causes increases in electrolytic conductivity, concomitant with increases in major cation concentrations; (3) interfacial conductivity generally parallels microbial cell concentrations and biofilm formation; (4) variations in microbial growth and biofilms causes spatiotemporal heterogeneity in the elastic properties of porous media; (5) SP signatures associated with the injection of groundwater into an in-situ biological PRB are dominated by diffusion potentials induced by the injections. The results suggest that electrolytic conductivity may be useful as an indicator of metabolism, while interfacial conductivity may be used as proxy indicator for microbial growth and biofilm formation in porous media. In addition, acoustic measurements may provide diagnostic spatiotemporal data for the validation of bioclogging models/simulations. Collectively, this study provides further evidence that geophysical measurements are sensitive to microbial-induced changes to geologic media, and may be useful for the detection and monitoring of subsurface microbial growth, activity, and distribution such as in microbial enhanced oil recovery, assessing biofilm barriers used for contaminant remediation, or as sealants for reservoirs in CO₂ sequestration studies --Abstract, page iv

    Microbial Growth and Biofilm Formation in Geologic Media Is Detected with Complex Conductivity Measurements

    Get PDF
    Complex conductivity measurements (0.1-1000 Hz) were obtained from biostimulated sand-packed columns to investigate the effect of microbial growth and biofilm formation on the electrical properties of porous media. Microbial growth was verified by direct microbial counts, pH measurements, and environmental scanning electron microscope imaging. Peaks in imaginary (interfacial) conductivity in the biostimulated columns were coincident with peaks in the microbial cell concentrations extracted from sands. However, the real conductivity component showed no discernible relationship to microbial cell concentration. We suggest that the observed dynamic changes in the imaginary conductivity (σ″) arise from the growth and attachment of microbial cells and biofilms to sand surfaces. We conclude that complex conductivity techniques, specifically imaginary conductivity measurements are a proxy indicator for microbial growth and biofilm formation in porous media. Our results have implications for microbial enhanced oil recovery, CO2 sequestration, bioremediation, and astrobiology studies

    Microbial-Induced Heterogeneity in the Acoustic Properties of Porous Media

    Get PDF
    It is not known how biofilms affect seismic wave propagation in porous media. Such knowledge is critical for assessing the utility of seismic techniques for imaging biofilm development and their effects in field settings. Acoustic wave data were acquired over a two-dimensional region of a microbial-stimulated sand column and an unstimulated sand column. The acoustic signals from the unstimulated column were relatively uniform over the 2D scan region. The data from the microbial-stimulated column exhibited a high degree of spatial heterogeneity in the acoustic wave amplitude, with some regions exhibiting significant increases in attenuation while others exhibited decreases. Environmental scanning electron microscopy showed differences in the structure of the biofilm between regions of increased and decreased acoustic wave amplitude. We conclude from these observations that variations in microbial growth and biofilm structure cause heterogeneity in the elastic properties of porous media with implications for the validation of bioclogging models

    Micronutrient Dietary Intake in Latina Pregnant Adolescents and Its Association with Level of Depression, Stress, and Social Support

    Get PDF
    Adolescent pregnant women are at greater risk for nutritional deficits, stress, and depression than their adult counterparts, and these risk factors for adverse pregnancy outcomes are likely interrelated. This study evaluated the prevalence of nutritional deficits in pregnant teenagers and assessed the associations among micronutrient dietary intake, stress, and depression. One hundred and eight pregnant Latina adolescents completed an Automated Self-Administered 24-hour dietary recall (ASA24) in the 2nd trimester. Stress was measured using the Perceived Stress Scale and the Prenatal Distress Questionnaire. Depressive symptoms were evaluated with the Reynolds Adolescent Depression Scale. Social support satisfaction was measured using the Social Support Questionnaire. More than 50% of pregnant teenagers had an inadequate intake (excluding dietary supplement) of folate, vitamin A, vitamin E, iron, zinc, calcium, magnesium, and phosphorous. Additionally, >20% of participants had an inadequate intake of thiamin, riboflavin, niacin, vitamin B6, vitamin B12, vitamin C, copper, and selenium. Prenatal supplement inclusion improved dietary intake for most micronutrients except for calcium, magnesium, and phosphorous, (>50% below the Estimated Average Requirement (EAR)) and for copper and selenium (>20% below the EAR). Higher depressive symptoms were associated with higher energy, carbohydrates, and fats, and lower magnesium intake. Higher social support satisfaction was positively associated with dietary intake of thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, vitamin C, vitamin E, iron, and zinc. The findings suggest that mood and dietary factors are associated and should be considered together for health interventions during adolescent pregnancy for the young woman and her future child

    Weather whiplash in agricultural regions drives deterioration of water quality

    Get PDF
    Excess nitrogen (N) impairs inland water quality and creates hypoxia in coastal ecosystems. Agriculture is the primary source of N; agricultural management and hydrology together control aquatic ecosystem N loading. Future N loading will be determined by how agriculture and hydrology intersect with climate change, yet the interactions between changing climate and water quality remain poorly understood. Here, we show that changing precipitation patterns, resulting from climate change, interact with agricultural land use to deteriorate water quality. We focus on the 2012â2013 Midwestern U.S. drought as a ânatural experimentâ. The transition from drought conditions in 2012 to a wet spring in 2013 was abrupt; the media dubbed this âweather whiplashâ. We use recent (2010â2015) and historical data (1950â2015) to connect weather whiplash (drought-to-flood transitions) to increases in riverine N loads and concentrations. The drought likely created highly N-enriched soils; this excess N mobilized during heavy spring rains (2013), resulting in a 34% increase (10.5 vs. 7.8 mg N Lâ»Â¹) in the flow-weighted mean annual nitrate concentration compared to recent years. Furthermore, we show that climate change will likely intensify weather whiplash. Increased weather whiplash will, in part, increase the frequency of riverine N exceeding E.P.A. drinking water standards. Thus, our observations suggest increased climatic variation will amplify negative tren

    Madagascar's fire regimes challenge global assumptions about landscape degradation

    Get PDF
    Narratives of landscape degradation are often linked to unsustainable fire use by local communities. Madagascar is a case in point: the island is considered globally exceptional, with its remarkable endemic biodiversity viewed as threatened by unsustainable anthropogenic fire. Yet, fire regimes on Madagascar have not been empirically characterised or globally contextualised. Here, we contribute a comparative approach to determining relationships between regional fire regimes and global patterns and trends, applied to Madagascar using MODIS remote sensing data (2003–2019). Rather than a global exception, we show that Madagascar's fire regimes are similar to 88% of tropical burned area with shared climate and vegetation characteristics, and can be considered a microcosm of most tropical fire regimes. From 2003–2019, landscape-scale fire declined across tropical grassy biomes (17%–44% excluding Madagascar), and on Madagascar at a relatively fast rate (36%–46%). Thus, high tree loss anomalies on the island (1.25–4.77× the tropical average) were not explained by any general expansion of landscape-scale fire in grassy biomes. Rather, tree loss anomalies centred in forests, and could not be explained by landscape-scale fire escaping from savannas into forests. Unexpectedly, the highest tree loss anomalies on Madagascar (4.77×) occurred in environments without landscape-scale fire, where the role of small-scale fires (<21 h [0.21 km2]) is unknown. While landscape-scale fire declined across tropical grassy biomes, trends in tropical forests reflected important differences among regions, indicating a need to better understand regional variation in the anthropogenic drivers of forest loss and fire risk. Our new understanding of Madagascar's fire regimes offers two lessons with global implications: first, landscape-scale fire is declining across tropical grassy biomes and does not explain high tree loss anomalies on Madagascar. Second, landscape-scale fire is not uniformly associated with tropical forest loss, indicating a need for socio-ecological context in framing new narratives of fire and ecosystem degradation

    A Face Versus Non-Face Context Influences Amygdala Responses to Masked Fearful Eye Whites

    Get PDF
    The structure of the mask stimulus is crucial in backward masking studies and we recently demonstrated such an effect when masking faces. Specifically, we showed that activity of the amygdala is increased to fearful facial expressions masked with neutral faces and decreased to fearful expressions masked with a pattern mask—but critically both masked conditions discriminated fearful expressions from happy expressions. Given this finding, we sought to test whether masked fearful eye whites would produce a similar profile of amygdala response in a face vs non-face context. During functional magnetic resonance imaging scanning sessions, 30 participants viewed fearful or happy eye whites masked with either neutral faces or pattern images. Results indicated amygdala activity was increased to fearful vs happy eye whites in the face mask condition, but decreased to fearful vs happy eye whites in the pattern mask condition—effectively replicating and expanding our previous report. Our data support the idea that the amygdala is responsive to fearful eye whites, but that the nature of this activity observed in a backward masking design depends on the mask stimulus

    A Protein Scaffold Coordinates SRC-Mediated JNK Activation in Response to Metabolic Stress

    Get PDF
    Obesity is a major risk factor for the development of metabolic syndrome and type 2 diabetes. How obesity contributes to metabolic syndrome is unclear. Free fatty acid (FFA) activation of a non-receptor tyrosine kinase (SRC)-dependent cJun NH2-terminal kinase (JNK) signaling pathway is implicated in this process. However, the mechanism that mediates SRC-dependent JNK activation is unclear. Here, we identify a role for the scaffold protein JIP1 in SRC-dependent JNK activation. SRC phosphorylation of JIP1 creates phosphotyrosine interaction motifs that bind the SH2 domains of SRC and the guanine nucleotide exchange factor VAV. These interactions are required for SRC-induced activation of VAV and the subsequent engagement of a JIP1-tethered JNK signaling module. The JIP1 scaffold protein, therefore, plays a dual role in FFA signaling by coordinating upstream SRC functions together with downstream effector signaling by the JNK pathway

    Lengthened Predelivery Stay and Antepartum Complications in Women with Depressive Symptoms During Pregnancy

    Full text link
    Background: It is crucial to understand the timing and mechanisms behind depression's effect on peripartum stay because attempts to intervene will vary based on the time period involved. We designed this study to compare predelivery and postdelivery length of stay in women with and without elevated depressive symptoms during pregnancy. Methods: This study involved secondary data analysis of a larger study exploring antepartum depression. Each subject completed the Center for Epidemiological Studies Depression Scale (CES-D) during pregnancy at a mean of 25.8 weeks' gestation. We used time-stamped data to compare total peripartum, predelivery, and postdelivery lengths of stay in women with and without elevated depressive symptoms during pregnancy. In addition, we used a Cox proportional hazards regression model to evaluate potential mechanisms for depression's effect on length of stay. Results: The study sample included 802 pregnant women. Overall, 18% of study subjects scored >=16 on the CES-D. Bivariate analyses demonstrated a significant association between elevated depressive symptoms and longer predelivery stays (time from admission to delivery). Interaction analyses demonstrated a significant interaction effect between depressive symptoms and parity, such that depressive symptoms were significantly associated with predelivery length of stay in multiparas but not so in primiparous subjects. In a multivariate model of multiparous subjects, depression's effect on length of stay was partially influenced by sociodemographic confounders but remained significant until antepartum complications were added to the model. Conclusions: Depressive symptoms during pregnancy are significantly associated with a subsequent increase in predelivery length of stay, and this association is mediated in part by antepartum complications, even after controlling for sociodemographic factors. These longer hospital stays can present significant burdens to the patient, her family, and the healthcare system. Future studies should evaluate whether interventions for depression during pregnancy can impact this relationship among depressive symptoms during pregnancy, antepartum complications, and extensive predelivery hospitalizations.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90486/1/jwh-2E2010-2E2380.pd
    corecore