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ABSTRACT 

The goals of this study were to investigate the effect of: (1) microbial metabolic 

byproducts, microbial growth, and biofilm formation on the low frequency electrical 

properties of porous media, (2) biofilm formation on acoustic wave properties, and (3) 

the natural electrical (self-potential) signatures associated with an in-situ biological 

permeable reactive barrier (PRB). The results suggest: (1) increases in electrolytic 

conductivity are consistent with increased concentrations of organic acids and 

biosurfactants; (2) mineral weathering promoted by organic acids causes increases in 

electrolytic conductivity, concomitant with increases in major cation concentrations; (3) 

interfacial conductivity generally parallels microbial cell concentrations and biofilm 

formation; (4)  variations in microbial growth and biofilms causes spatiotemporal 

heterogeneity in the elastic properties of porous media; (5) SP signatures associated with 

the injection of groundwater into an in-situ biological PRB are dominated by diffusion 

potentials induced by the injections.  The results suggest that electrolytic conductivity 

may be useful as an indicator of metabolism, while interfacial conductivity may be used 

as proxy indicator for microbial growth and biofilm formation in porous media.  In 

addition, acoustic measurements may provide diagnostic spatiotemporal data for the 

validation of bioclogging models/simulations. Collectively, this study provides further 

evidence that geophysical measurements are sensitive to microbial-induced changes to 

geologic media, and may be useful for the detection and monitoring of subsurface 

microbial growth, activity, and distribution such as in microbial enhanced oil recovery, 

assessing biofilm barriers used for contaminant remediation, or as sealants for reservoirs 

in CO2 sequestration studies. 
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1. INTRODUCTION 

1.1. MOTIVATION  

Microorganisms have played an integral role in Earth’s evolution, and the 

transformations imparted to near-surface geologic systems by microbial activity are well 

documented in biogeochemical and geomicrobiology studies [e.g., Chapelle and Bradley, 

1997; Maier et al., 2000]. Geophysicists, however, are only now beginning to realize the 

importance of microorganisms and microbial processes on geophysical properties. Over 

the last decade, there has been growing interest in the field of geophysics to find 

relationships between microbial activity and geophysical signatures [e.g., Atekwana et 

al., 2006]. As such, recent research has underscored the potential opportunities that exist 

for geophysical methods to investigate ‘bio-geophysical’ phenomena, and not just 

subsurface physicochemical properties as geophysical techniques are usually employed. 

This has lead to the emergence of a new sub-discipline of geophysics called 

‘biogeophysics’, which is a multi-disciplinary fusion of the fields of biology, geology, 

and geophysics. Biogeophysics can be broadly defined as the study of geophysical 

signatures associated with subsurface biological activity [Atekwana et al., 2006]. In 

particular, biogeophysics seeks to improve understanding of the geophysical response 

associated with (1) microbial cells, (2) microbial interactions with geologic materials, and 

(3) microbial-induced transformations of geologic media [e.g., Atekwana et al., 2006]. 

Full realization of the underlying mechanisms responsible for these biogeophysical 

signatures, however, has not yet been achieved. Ultimately, a better understanding of 

biogeophysical signatures may allow for the utilization of geophysical methods to detect, 

characterize, and even monitor the growth and activity of microorganisms in the 

subsurface. 

Microbial transformations of geologic media are complex, often coupled, and can 

occur over a wide range of spatial and temporal scales. Therefore, it is often difficult to 

predict the extent of these dynamic microbial-induced alterations in subsurface 

environments. A generalized conceptual diagram of the possible affects of microbial 

growth and activity on the physicochemical properties of porous media is shown in 

Figure 1.1. Current biogeochemical sampling and analytical methods can provide some 



 

 

2 

information regarding the extent and distribution of subsurface microbial activity by 

looking at trends in the concentration of biogeochemical indicators (e.g., electron 

acceptors, organic acids). These methodologies, however, are often expensive, laborious, 

and are limited in the spatial and temporal resolution needed to evaluate microbial 

activity at the field scale. Therefore, the ability to develop and employ cost effective, 

minimally invasive tools that span the spatiotemporal scales associated with microbial 

activity, such as geophysical methods, would have beneficial implications for studies 

aimed at assessing subsurface microbial processes. The geophysical signatures associated 

with subsurface microbial processes and microbial-induced alterations to geologic media, 

however, are not well understood. Figure 1.1 demonstrates that changes in the 

geophysical properties of geologic media are the end product of the integrated 

biogeochemical processes associated with microbial growth and activity. Thus, the 

challenge is decoupling the complex microbial-induced physical and chemical 

transformations inherent during microbial activity, and quantifying the magnitudes of the 

geophysical response.  

 

1.2. PREVIOUS BIOGEOPHYSICAL STUDIES 

Historically speaking, the idea of biogeophysics first began with research studies 

conducted at an aged hydrocarbon contaminated site. While lower bulk conductivity 

would be expected in hydrocarbon contaminated environments, consistent with the 

insulating properties of hydrocarbons [e.g., Mazac et al., 1990], previous field studies 

observed anomalous elevated conductivity in zones with enhanced microbial activity 

[e.g., Bermejo et al., 1997; Sauck et al., 1998]. The elevated conductivity values were 

attributed to microbial degradation of the hydrocarbons and the associated microbial-

induced alterations to the physicochemical properties of the subsurface media [e.g., 

Bermejo et al., 1997; Sauck et al., 1998; Atekwana et al., 2000; Werkema, et al., 2003].  
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Figure 1.1.  Generalized conceptual diagram showing that microbial growth and activity 

in porous media can alter the physicochemical properties, and thus the geophysical 

properties of porous media. 

 

 

 

Motivated by the Bermejo et al. [1997] and Sauck et al. [1998] studies, microbial-

induced alterations to the electrical properties of porous media have been the subject of a 

number of additional biogeophysical studies [e.g., Atekwana et al., 2004a-d; Naudet and 

Revil, 2005; Ntarlagiannis et al., 2005a&b; Williams et al., 2005; Slater et al., 2007a; 

2007b]. Various microbial-induced physicochemical changes have been suggested to 

explain the elevated bulk conductivity, such as (1) increased ionic strength of pore fluid 

by addition of metabolic byproducts to solution [Sauck et al., 1998; Abdel Aal et al., 

2004; Atekwana et al., 2004a], (2) increased fluid conductivity and concentration of total 

dissolved solids (TDS) through enhanced mineral weathering by organic acids [Sauck et 

al., 1998; Atekwana et al., 2004b; 2005], (3) presence  and activity of distinct microbial 

populations [Allen et al., 2007]; and (4) increased microbial cell density [Ntarlagiannis et 

al., 2005b] and enhanced attachment of microbes to mineral surfaces resulting in 
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alterations of the electrical properties at the cell-mineral interface [Abdel Aal et al., 2004; 

2006; 2009; Davis et al., 2006]. While these studies all provide plausible, generally 

qualitative explanations for the generation of the anomalous conductivity, the relative 

contributions of the various different mechanisms remains unknown.  

To date, most previous biogeophysical research has focused on geoelectrical 

methods to investigate microbe-sediment-geophysics relationships. In particular, 

laboratory studies have documented the sensitivity of dielectric spectroscopy [e.g., 

Prodan et al., 2004] and induced polarization (IP) [e.g., Ntarlagiannis et al., 2005b; 

Abdel Aal et al., 2009] methods for the direct detection of microbial cells. In addition, the 

IP method has been found useful for the investigation of the presence of attached 

microbial cells [e.g., Abdel Aal et al., 2009] and biofilms [e.g., Davis et al., 2006; 

Ntarlagiannis and Ferguson, 2009], and microbial-induced mineral precipitation [e.g., 

Ntarlagiannis et al., 2005a; Slater et al., 2007a; Personna et al., 2008] in porous media. 

Further, the self-potential (SP) method has been employed for a number of field and 

laboratory studies to investigate the natural electrical signatures associated with 

microbial-induced subsurface transformations and redox gradients [e.g., Naudet et al., 

2003; 2004; Naudet and Revil, 2005; Ntarlagiannis et al., 2007]. Additionally, while 

fewer in number, studies have also employed the use of acoustic (compressional) [e.g., 

Williams et al., 2005] and shear wave [e.g., DeJong et al., 2006] seismic for the 

investigation of biogeophysical phenomena. A more in-depth review of the geophysical 

methods employed for biogeophysical investigations can be found in Atekwana et al. 

[2006]. 

These previous geophysical studies have greatly advanced the field of 

biogeophysics, documenting the potential that exists for geophysical methods to explore 

microbial-induced phenomena in the subsurface. However, a mechanistic understanding 

of the cause of biogeophysical signatures is still lacking. Some of the outstanding 

questions that remain from these previous investigations include: (1) What are the 

relative contributions of microbial metabolic byproducts on geophysical signatures? (2) 

What is the effect of microbial growth and biofilm formation on geophysical properties? 

(3) What geophysical techniques are best suited for assessing microbial-geologic 

interactions?  
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Clearly, there is a knowledge gap in our understanding of not only the expected/predicted 

geophysical response, but also the mechanisms responsible for measured bio-geophysical 

responses, warranting further investigation. 

 

1.3. RESEARCH OBJECTIVES 

The primary goal of this thesis is to test the hypothesis that microbial growth and 

activity in geologic media can result in measurable changes to the geophysical properties 

of the media. To better understand the relationship between microbial activity and 

geophysical response, laboratory bench-scale column experiments and a field-scale 

experiment were conducted. The specific objectives of this thesis are to: 

1. Determine the direct contribution of metabolic byproducts (organic acids 

and biosurfactants) to electrical conductivity magnitude and investigate 

the effect of mineral weathering promoted by organic acids on the 

temporal conductivity response of porous media. 

2. Investigate the direct contribution and relative magnitude of the effect of 

microbial growth and biofilm formation on the low-frequency electrical 

properties of porous media. 

3. Investigate the spatial and temporal changes in acoustic wave propagation 

associated with microbial growth and biofilm formation in porous media 

4. Investigate the natural electrical signatures associated with an in-situ 

biological permeable reactive barrier in response to the injection of 

contaminated groundwater. 

Understanding the geophysical response of microbial biosignatures in controlled 

laboratory investigations is the first step toward recognizing these biosignatures in field 

geophysical data. A fundamental understanding of the influence of microbial growth and 

activity on geophysical properties is needed as this biogeophysical approach will allow 

for more accurate interpretation of geophysical data from near-surface environments 

where microbial activity is enhanced or stimulated.  
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In addition, quantitative knowledge of the geophysical signatures associated with 

microbial activity may allow for minimally invasive geophysical techniques to be 

employed for monitoring the rates of subsurface biogeochemical processes. Such 

information would have beneficial implications for geomicrobiology investigations 

including bioremediation and microbial enhanced oil recovery (MEOR) activities. 

 

1.4. OUTLINE OF THESIS 

This introductory section (one) outlines the motivation and research objectives for 

this study. A description is given on microbial growth and activity in geologic media, and 

the potential effects of microbial-induced alterations to the physicochemical properties of 

the media. 

Section two provides a brief literature review of the background, theory, and 

method of measurement for the geophysical techniques used in this thesis study. 

Paper one describes the results of a laboratory experiment aimed at investigating 

the first objective of this study, to assess the direct contribution of metabolic byproducts 

to the low frequency (0.1-1000 Hz) electrical properties of porous media. The affect of 

mineral weathering promoted by organic acids is also investigated. The results of this 

experiment show that increases in electrolytic (fluid and real) conductivity are consistent 

with increases in concentrations of organic acids and biosurfactant. Increases in the 

electrolytic conductivity are also consistent with temporal increases major cation 

concentrations, which is indicative of mineral weathering, with a secondary affect on the 

interfacial conductivity. The results of this experiment suggest that electrolytic 

conductivity measurements may be useful as an indicator of microbial metabolism.  

Paper two reports on the results of a laboratory experiment conducted to 

accomplish the second objective, to investigate the effect of microbial growth and biofilm 

formation on the low frequency electrical properties of porous media. The results of this 

experiment showed that interfacial conductivity generally paralleled the attached 

microbial cell concentrations in the biostimulated (bacteria + nutrients + diesel) columns. 

The results suggest that interfacial conductivity measurements may be used as proxy 

indicator for microbial growth and biofilm formation in porous media. 

Paper three describes the results of a laboratory experiment aimed at 
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investigating the spatial and temporal changes in acoustic wave propagation associated 

with microbial growth and biofilm development in porous media. The results from the 

biostimulated column show an overall temporal decrease in acoustic wave velocity and 

exhibit variations in acoustic wave amplitude spatially over a 2D area of the column. 

While the exact mechanisms responsible for the differences in velocity and amplitude are 

yet unclear, the spatial variations appear to correlate with differences in the amount of 

attached biofilm and/or biofilm architecture.   

Paper four describes the results of a field-scale experiment aimed at assessing the 

natural electrical (self-potential) signatures associated with the injection of contaminated 

and uncontaminated groundwater into an in-situ biological permeable reactive barrier. 

The results show that the self-potential (SP) signals are dominated by electrochemical 

(diffusion) potentials induced by the injections, though the affect of microbial activity 

can not be completely ruled out. 

Section three provides a summary of the observations and conclusions of this 

study. This chapter also lists questions raised during this study and discusses future 

directions for research. 
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2. REVIEW OF LITERATURE: GEOPHYSICAL METHODS 

2.1. COMPLEX CONDUCTIVITY METHOD 

2.1.1. Theory and Background.  The complex conductivity or spectral induced 

polarization (SIP) method is a geophysical technique that extends upon the DC-resistivity 

method [e.g., Olhoeft, 1985] by measuring both the conductive and capacitive low-

frequency (<1 kHz) electrical properties of earth materials. The electrical properties of 

porous earth materials can be described in terms of either complex conductivity (σ*), 

complex resistivity (ρ*), or complex permittivity (ε*) [e.g., Slater, 2006], where: 

 

 *
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 i ,      (1) 

 

1i , and ω is the angular frequency. In terms of the in-phase or real (σ’) and the out-

of-phase or imaginary (σ”) components of σ*: 
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where |σ| and φ are the measured conductivity magnitude and phase angle, respectively. 

Further, the relationship between the measured |σ| and φ parameters and the σ’ and σ” 

components can be described as: 
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if the φ is < 100 mrad. Thus, for small phase angles the measured φ is the ratio of 

conduction to polarization.  
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The real part of σ* represents ohmic conduction currents (energy loss) that are in-

phase with the applied electric field, whereas the out-of-phase imaginary part is a much 

smaller component which represents polarization or energy storage. In the absence of 

metallic minerals, there are two pathways available for electric charge transport within a 

porous medium, occurring by (1) electrolytic conduction (σel) via the fluid-filled pore 

spaces, and (2) interfacial conduction via ion migration within the electrical double layer 

(EDL) at mineral-fluid interfaces [Lesmes and Morgan, 2001]. At the low frequencies 

measured by the complex conductivity method these two pathways are commonly 

assumed to add in parallel [e.g., Waxman and Smits, 1968; Vinegar and Waxman, 1984], 

and can be modeled as: 

 

 )(")]('[)(**  surfsurfelsurfel i ,    (5) 

 

where (’surf) and (”surf) are the frequency-dependant real and imaginary parts of 

complex surface conductivity (*surf), respectively [Lesmes and Frye, 2001]. We assume 

that: 
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where εel is equivalent to the high frequency dielectric permittivity (ε∞) [Slater and 

Lesmes, 2002]. Further, in coarse clay-free porous media σel >> σ’surf, and as such σ’ ≈ 

σel, and can be expressed using Archie’s equations [Archie, 1942]: 
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where σw is the fluid conductivity, F represents the formation factor, S is the degree of 

saturation, effis the effective porosity, n is the saturation exponent, and m is the 

cementation exponent. 

The real conductivity is dependent on both the electrolytic and interfacial 
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(surface) conduction, whereas the imaginary conductivity is uniquely sensitive to 

interfacial processes. Interfacial conduction and polarization are dependent on surface 

area, ionic charge density, and ionic mobility [e.g., Vinegar and Waxman, 1984; Revil 

and Glover, 1998; Lesmes and Frye, 2001]. In the absence of metallic minerals, the 

imaginary conductivity response is commonly attributed to ion migration within the 

electrical double layer (EDL) at mineral-fluid interfaces [Lesmes and Morgan, 2001]. 

However, other mechanisms can result in polarization effects, such as ion accumulation 

in pore throats and reduced ionic mobility [e.g., Vinegar and Waxman, 1984]. Further 

discussion of these polarization mechanisms can be found in Telford et al. [1991] and 

Kearey et al. [2002].  

2.1.2. Method of Measurement.  The complex conductivity measurements 

collected for this thesis study were obtained with a two-channel dynamic signal analyzer 

(DSA) by using a four-electrode technique [Vanhala and Soininen, 1995; Slater and 

Lesmes, 2002]. Figure 2.1 shows the DSA and the laboratory-scale column setup for 

experimental complex conductivity measurements. Current was injected through a pair of 

silver-silver chloride (Ag-AgCl) electrode coils placed at the ends of the experimental 

columns, and the electrical response was measured with two non-polarizing Ag-AgCl 

potential electrodes installed between the current electrodes. The potential electrodes 

were located in fluid-filled chambers outside of the current path in an effort to minimize 

any spurious polarization effects that may develop at the fluid-electrode interface [e.g., 

Vanhala and Soininen, 1995]. The distance between the current and potential electrodes 

varied depending on the column geometry for each specific experiment. Using this setup, 

the impedance magnitude (|σ|) and phase shift (φ) of the sample was measured between a 

measured voltage sinusoid and an impressed current sinusoid, relative to a high-quality 

resistor at 40 frequency intervals between 0.1 and 1000 Hz. The measured |σ| and φ were 

then used to calculate the real (σ’) and imaginary (σ”) conductivity as follows: 
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Figure 2.1:  Drawing showing the general setup for collecting complex conductivity 

measurements using a dynamic signal analyzer. 

 

 

 

2.2. SELF-POTENTIAL METHOD 

2.2.1. Theory and Background.  The self-potential (SP) method, or the 

spontaneous potential method, is a geophysical technique that is based upon the passive 

measurement of naturally occurring electric potentials in the subsurface with non-

polarizable electrodes in contact with the ground surface. Natural electric potentials, or 

SP anomalies, can be generated by a variety of factors and/or mechanisms, and include 

electrokinetic, electrochemical, mineralization, redox, thermoelectric, and bioelectric 

potentials [e.g., Nyquist and Corry, 2002]. In natural environments, however, the SP 

response often results from a combination of mechanisms [e.g., Darnet and Marquis, 

2004; Kulessa et al., 2003; Maineult et al., 2004]. 

An electrical field that develops in association with the flow of fluid through a 

porous medium is often called an electrokinetic or streaming potential [e.g., Ernstson and 
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Scherer, 1986]. Streaming potentials can arise from the drag of excess charge of the pore 

fluid during fluid flow through a porous medium [e.g., Nyquist and Corry, 2002; Revil et 

al., 2003; Boleve et al., 2007], and the resultant electrical field commonly parallels the 

direction of fluid flow. The potential that is generated is a function of the hydraulic 

gradient and the electrokinetic coupling coefficient. Based on the classical description of 

electrokinetic theory [e.g., Sill, 1983], the current density is related to pore fluid pressure 

gradients and a streaming current coupling coefficient which is dependent on the zeta-

potential (ζ), an interfacial property of the porous media [e.g., Boleve et al., 2007]. A 

proportional relationship exists between hydraulic gradient (Δh) and SP, which is 

described by a streaming coupling coefficient (C) [Fournier, 1989; Revil et al., 2003]. 

Thus, streaming potential is equal to: 

 

 ΔSP = CΔh       (10) 

where 

 
w

L
C


 ,      (11) 

and 

 
η

ζε0nc
L  ,      (12) 

 

where L is the reduced coupling coefficient, σw is fluid conductivity, c0 is material 

medium tortuosity, n is medium porosity, ε is fluid dielectric constant, η is fluid viscosity.  

A recently revised formulation of the electrokinetic theory developed by Revil and Leroy 

[2004] and Revil et al. [2005], and presented in Boleve et al. [2007], describes a direct 

dependence of streaming potential on the microstructure of porous media, and more 

specifically permeability. Herein, we will focus on the classic formulation of the 

streaming potentials, but it is worth mentioning the importance of the new formulation 

for investigating the effect of microstructure on SP signals.  

Electrochemical potentials can arise from differences in chemical composition, 

such as concentration gradients and redox gradients, known as diffusion potentials and 

electro-redox potentials, respectively. Diffusion potentials can result from ionic 
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concentration gradients in solutions with ions of differing ionic mobilities [e.g., 

Reynolds, 1997]. This electrochemical effect is related to differences in fluid 

conductivity (σ1/σ2), and can be described by a combined electrochemical coupling 

coefficient (Ccomb) [Kulessa et al., 2003], where: 

 

 ΔSP = Ccomb ln (σ1/σ2)      (13) 

  

A ‘geobattery’ model has been used to describe the strong SP response measured 

over subsurface ore deposits, associated with oxidation-reduction reactions [e.g., Sato 

and Mooney, 1960]. Previous researchers have described this geobattery model as being 

the shuttling of electrons from oxidized zones above the water table to reduced zones 

below the water table [e.g., Sato and Mooney, 1960; Timm and Moller, 2001]. Previous 

studies have also observed a similar relationship between SP signals and redox potential 

gradients associated with contaminant plumes [e.g., Naudet et al., 2003; 2004; Arora et 

al., 2007]. While the mechanisms responsible for this relationship are still not well 

understood, it has been suggested that a geobattery model may be used to explain this 

phenomena [e.g., Naudet et al., 2004]. According to Naudet and Revil [2005], biomass 

may act as a conductor to electrically connect the oxidized and reduced zones of 

contaminant plumes. 

2.2.2. Method of Measurement.  Collection of SP measurements is relatively 

non-trivial in that non-polarizing electrodes are placed at the ground surface, connected 

via wire to a high impedance (>10 MΩ) voltmeter, and the electric potential is measured. 

There are several different types of non-polarizing electrodes that can be used for SP 

measurement, but for this thesis study the lead-lead chloride (Pb-PbCl2) type of non-

polarizing electrodes were constructed (after Petiau [2000]) and employed. The SP 

method requires the use of non-polarizing electrodes to avoid any reactions (i.e., redox 

potentials) that may develop at the fluid-electrode interface.  
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The SP electrodes are placed in contact with the ground surface; one electrode is 

used for SP measurement (i.e., roving electrode), and another electrode is used as a 

reference electrode, which is situated at a location far from the SP survey site. For this 

thesis study, SP data were collected as differential values relative to a reference electrode, 

and by convention the reference electrode was connected to the negative terminal of the 

voltmeter. 

 

2.3. ACOUSTIC WAVE METHOD 

2.3.1. Background.  The 2D acoustic wave scanning system (or the non-

destructive testing (NDT) technique of ultrasonic testing) is a techniqe that uses the 

propagation of high frequency sound energy (or waves) through earth materials and 

measures the travel time and/or change in intensity of the wave over a constrained 

distance [e.g., Blitz and Simpson, 1996]. Measurement of acoustic wave properties (e.g., 

velocity and amplitude) can be used to characterize the elastic/viscoelastic properties of a 

material, as well as the distribution of mechanical properties. Acoustic properties of 

porous media are generally dependant on the bulk modulus of the saturating fluid [e.g., 

Knight and Nolen-Hoeksema, 1990], the elastic moduli of the solid media [e.g., Ecker et 

al., 1998], and the solid-fluid interactions [e.g., Clark et al., 1980]. Discussion of acoustic 

wave theory can be found in Telford et al. [1991] and Kearey et al. [2002]. 

Energy loss mechanisms for fluid-saturated porous media fall into three 

categories: viscoelastic loss, fluid-solid surface physiochemical loss, and scattering loss 

[Li et al., 2001]. Generally, decreases in acoustic amplitude result from the weakening of 

grain contacts (physical/chemical alteration of surfaces and/or grain contacts [e.g., 

Murphy et al., 1984; Clark et al., 1980]) in porous media, both of which reduce the 

elastic moduli and are manifested by delays and attenuation of acoustic waves. Increases 

in acoustic amplitude may result from increases in the bulk modulus of the solid media 

[e.g., Li et al., 2001] through the stiffening of grain contacts. 

2.3.2. Method of Measurement.  For this thesis study, a full-waveform acoustic 

wave imaging system was used to obtain two-dimensional point-by-point maps of the 

acoustic response of the samples [e.g., Pyrak-Nolte et al., 1999]. The acoustic imaging 

system used two water-coupled plane-wave transducers (1 MHz central frequency) as 
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source and receiver.  Water-coupled transducers were used to ensure the same coupling 

between the transducers and the sample at all locations on the sample and over time. 

Figure 2.2 shows the experimental setup and general components of the acoustic imaging 

system. Using the acoustic mapping mode (C-scan), computer-controlled linear actuators 

(Newport 850-B4 and Motion Master 2000) were used to move the source and receiver in 

unison over the area of interest.  A high-voltage pulse generator (Panametrics PR1500) 

was used to excite the source and to receive the transmitted signal. At each point in the 

2D scan region, a 50 microsecond window of the transmitted signal was recorded and 

digitized with an oscilloscope (Lecroy 9314L). The acoustic signals were then stored to a 

computer, and the velocity and amplitude of the acoustic wave signals are then analyzed. 

 

 

 

 

Figure 2.2:  Drawing showing the general setup for collecting acoustic wave 

measurements. 
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1. ON THE CONTRIBUTION OF MICROBIAL METABOLIC BYPRODUCTS 

TO THE ELECTRICAL PROPERTIES OF POROUS MEDIA 

1.1. ABSTRACT  

The effect of microbial metabolic byproducts on the low frequency (0.1-1000 Hz) 

electrical properties of porous media was investigated in order to understand their 

contribution to the anomalous bulk electrical conductivity (σb) observed at hydrocarbon 

contaminated sites. To simulate the direct addition of metabolic byproducts to porous 

media, silica sand-packed columns were treated with varying concentrations of organic 

acids or biosurfactant (rhamnolipids) and complex conductivity (σ*) measurements were 

collected for each treatment. The effects of mineral weathering by organic acids in porous 

media was investigated by saturating mixed mineral sand-packed columns with organic 

acids or water, and temporal σ* measurements were collected for a total of 120 days.  

A qualitative comparison of the results of this study to that of previous field 

studies showed that the direct addition of organic acids and biosurfactants at field 

concentrations only accounted for <5% of the total measured σb in the sand columns. 

This suggests that metabolic byproducts may only account for part of the anomalous σb 

observed at hydrocarbon contaminated field sites undergoing bioremediation. The results 

of the weathering experiment showed that temporal increases in the fluid and complex 

conductivity parameters are concomitant with temporal increases in Ca and Mg 

concentrations. Compared to mineral weathering products at field sites these products can 

account only in part for the elevated bulk conductivity values measured at hydrocarbon 

field sites. A qualitative comparison of our results to that of a laboratory investigation of 

hydrocarbon biodegradation showed that the magnitude of change in pH, fluid 

conductivity, and dissolved ion concentrations were similar but could not fully explain 

the σ*. Since the increases in the electrolytic conductivity either by direct addition of 

metabolic byproducts or addition of ions via mineral weathering cannot fully account for 

the magnitude increase of the bulk electrical conductivity we measured, we suggest that 

the presence of microbes and the alteration of the petrophysical properties by microbial 

activity is an important variable to consider in the observed field σb response. 

Nonetheless, the results of this study suggest that σ*, in particular electrolytic 
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conductivity measurements are sensitive to relatively low concentrations of organic acids 

and biosurfactants, and may be used as an indicator of microbial metabolism. 

 

1.2. INTRODUCTION 

Microbial-induced alterations to the electrical properties of porous media have 

been the subject of a number of geophysical studies [e.g., Atekwana et al., 2004a-d; 

Naudet and Revil, 2005; Ntarlagiannis et al., 2005b; Williams et al., 2005; Slater et al., 

2007a; 2007b]. Growing interest in the use geophysical methods to evaluate subsurface 

microbial processes has been motivated by field and laboratory evidence suggesting that 

microbial degradation of hydrocarbon results in elevated bulk electrical conductivity (σb) 

[e.g., Bermejo et al., 1998; Sauck et al., 1998; Werkema et al., 2003]. Various microbial-

induced physicochemical changes have been suggested to explain the elevated σb, such as 

(1) increased ionic strength of pore fluid by addition of metabolic byproducts to solution 

[Sauck et al., 1998; Abdel Aal et al., 2004; Atekwana et al., 2004a], (2) increased fluid 

conductivity (σw) and concentration of total dissolved solids (TDS) from enhanced 

mineral weathering by organic acids [Sauck et al., 1998; Atekwana et al., 2005], and (3) 

increased microbial cell density [Ntarlagiannis et al., 2005b] and attachment of microbes 

to mineral surfaces that enhance the electrical properties at the cell-mineral interface 

[Abdel Aal et al., 2004; 2006; Davis et al., 2006].  

During microbial utilization of organic carbon (e.g., hydrocarbons), fermentative 

anaerobes can produce an excess of intermediate products such as gases, organic acids, 

solvents [e.g., Bartha and Atlas, 1987; Ollivier and Magot, 2005] and biosurfactants 

[e.g., Cassidy et al., 2001; 2002]. The accumulation of excess byproducts in pore water 

and void spaces can lead to alterations in the physicochemical properties of the 

subsurface environment. Microbial production of organic acids and the subsequent 

accumulation of acid in pore water have the potential to affect the physicochemical 

properties of porous media in a variety of ways [e.g., McMahon and Chapelle, 1991; 

Cozzarelli et al., 1994; McMahon et al., 1995; Cozzarelli et al., 1995]. Elevated organic 

acid concentrations in groundwater promotes mineral dissolution [e.g., Hiebert and 

Bennett, 1992; McMahon et al., 1995], releasing ions into solution [e.g., Bennett et al., 

1996], and thus changes the pore fluid chemistry. Further, enhanced mineral dissolution 
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catalyzed by increased organic acid concentration can lead to physical alterations, 

including changes in grain surface morphology and pore throat geometry which can result 

in the generation of microporosity or secondary porosity [e.g., Lundegard and Land, 

1986; Meshri, 1986]. Such physical changes may in turn affect the hydraulic properties 

(e.g., permeability, hydraulic conductivity) of the subsurface environment [e.g., 

McMahon and Chapelle, 1991]. 

Biosurfactants can affect the physicochemical properties of contaminated media 

by adsorbing to and altering the conditions at interfaces [e.g., Cassidy et al., 2001; 2002; 

Ron and Rosenberg, 2001]. Biosurfactants like solvents, can alter the wettability of 

interfaces (e.g., oil-rock interface), reducing the interfacial tension and aiding in the 

release of hydrocarbons from porous substrates [e.g., Zhang et al., 1995; Volkering et al., 

1998; Ron and Rosenberg, 2001].  

The physicochemical alterations imparted by organic acids and biosurfactants in 

porous media have the potential to translate into changes to the geophysical properties of 

the media, as suggested by Cassidy et al. [2001; 2002]. The Cassidy et al. [2001; 2002] 

studies, however, suggested this potential based on fluid conductivity measurements, 

attributing changes in fluid conductivity to increased presence of byproducts, but did not 

measure the subsequent geophysical response. The challenge is decoupling the complex 

microbial-induced physical and chemical transformations inherent during biodegradation 

and in quantifying the magnitude of the components of the geoelectrical response. In this 

study, we investigate the effects of two types of microbial metabolic byproducts, organic 

acids and biosurfactants, on the electrical properties of porous media. Complex 

conductivity measurements were employed for this study as this method is sensitive to 

changes in the surface and chemical properties of geologic media [e.g., Lesmes and Frye, 

2001]. This permits the assessment of the relative contributions of microbial-induced 

changes to pore fluid chemistry and alterations at interfaces. In the absence of metallic 

minerals, and at frequencies <1 kHz, the complex conductivity (σ*) of a porous medium 

is dependent on (1) electrolytic conductivity (σel) which describes the ohmic electric 

conductance through fluid-filled pore spaces, and (2) interfacial conductivity (σ*int) 

which is a complex term that represents the conduction and polarization mechanisms 

occurring at interfaces. 
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Here, we report on the results of laboratory experiments designed to investigate 

the contribution of microbial metabolic byproducts to the complex conductivity of porous 

media. Our objectives were to 1) determine the direct contribution of organic acids and 

biosurfactants to σ* magnitude, and 2) investigate the effect of mineral weathering by 

organic acids on the temporal σ* response. In addition to investigating the direct effect of 

the presence of organic acids, we were also interested in determining the relative 

magnitude of the electrical contribution of the organic acids (weak electrolytes) 

compared to that of strong electrolytes (i.e., salts). The results of our study are significant 

in that a fundamental understanding of the effects of microbial byproducts on 

geoelectrical properties will provide a framework for the interpretation of geophysical 

data from near subsurface environments where microbial activity is enhanced during 

bioremediation and in microbial enhanced oil recovery (MEOR). 

 

1.3. METHODS 

1.3.1 Experimental Column Setup.  The experimental columns fabricated for 

this study were 24 cm long and constructed from 3.2 cm inner diameter polyvinyl 

chloride (PVC) pipe (Figure 1.1a). Three columns used to investigate the direct effect of 

metabolic byproducts (Figure 1.1a) were dry-packed with 20-30 mesh silica sand  

(Ottawa, IL) consisting of 99.8% silicon dioxide, 0.02% iron oxide, 0.06% aluminum 

oxide, and <0.01% each of magnesium oxide, sodium oxide, and potassium oxide. The 

three columns used to investigate the effect of mineral weathering by organic acids were 

modified with a fluid reservoir installed on top of each column (Figure 1.1b) to provide 

enough fluid to run the experiment in a closed system and allow for periodic fluid 

sampling from the reservoir. These columns were dry-packed with coarse (0.5-1 mm) 

natural sand (approximately 75% quartz, 10% feldspar, 5% chert, 5% carbonate, 5% rock 

fragments) collected from Burgher Branch Creek, Rolla, MO (Latitude 37°56’ N; 

Longitude 91°44’ W). All the sands were washed with deionized (DI) water, air-dried, 

and disinfected by autoclaving prior to use in the experiment. 
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Figure 1.1.  Schematic of the columns used for the (a) direct contribution of metabolic 

byproducts experiment, and (b) weathering by organic acids experiment. Complex 

conductivity measurements made with a dynamic signal analyzer as shown in (b). 

 

 

 

1.3.2. Complex Conductivity Measurements.  Low frequency electrical 

measurements (Figure 1.1b) were obtained with a two-channel dynamic signal analyzer 

(DSA) by using a four-electrode technique [Vanhala and Soininen, 1995; Slater and 

Lesmes, 2002]. Current was injected through a pair of silver-silver chloride (Ag-AgCl) 

electrode coils placed 16 cm apart in the column, and the electrical response was 

measured with two Ag-AgCl potential electrodes installed between the current electrodes 

(9 cm apart). We measured the impedance magnitude (|σ|) and phase shift (φ) of our 

sample between a measured voltage sinusoid and an impressed current sinusoid, relative 

to a high-quality resistor at 40 frequency intervals between 0.1 and 1000 Hz. The 

measured |σ| and φ were used to calculate the real (σ’ = |σ| sin φ) and imaginary (σ” = |σ| 

cos φ) parts of σ*. The real component of σ* depends on both the σel and surface 

conductivity (σ’surf), and represents conduction loss in the sample (σ’ = σel + σ’surf = σw/F 
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+ σ’surf) [Lesmes and Frye, 2001]. Where F represents the formation factor of the 

sediment sample, and σ’surf results from various factors at the mineral-fluid interface, 

such as surface area, surface charge density, and/or ionic mobility [e.g., Revil and Glover, 

1998]. In addition, the imaginary part of σ* is an interfacial component and energy 

storage term which relates to the polarization phenomena that occurs at interfaces (σ*int) 

[e.g., Lesmes and Frye, 2001].  

Prior to starting the experiments, tests were carried out on the columns to 

determine the variability in the σ* measurements between the three columns in each 

column set (either silica sand or mixed mineral sand column set). Each column was 

saturated with NaCl solutions of known σw (30-3000 µS/cm) and σ* measurements were 

collected. For each column set, the φ and |σ| data were averaged at each σw value and the 

variability is reported as the standard deviation from the average. After the variability 

tests, the columns were flushed with DI water prior to injection of the experimental 

solutions. 

1.3.3. Varying concentrations of metabolic byproducts.  The silica sand-

packed columns were saturated with either organic acid, biosurfactant, weak organic acid 

salt, or strong electrolytic inorganic salt solutions (Table 1.1). The following organic 

acids were used in this study: acetic (C2H4O2), butyric (C4H8O2), formic (CH2O2), and 

propionic (C3H6O2) acid.  Each acid solution was prepared individually in concentrations 

of 10, 100, and 1000 µN. The biosurfactant solutions were prepared using a stock 

solution of 15% rhamnolipids in distilled water (JBR 515; Jeneil Biosurfactant 

Company), consisting of a 50 w/v% combination of monorhamnolipids (C26H48O9) and 

dirhamnolipids (C32H58O13), or RL1 and RL2, respectively. The solutions of 

biosurfactants (rhamnolipids) were prepared in concentrations of 0.01, 0.5, 0.1, and 0.5%, 

or 0.057, 0.28, 0.57, and 2.88 g/L, respectively, by diluting the original 15% rhamnolipid 

solution in DI water to the desired concentrations. The individual organic acid salt 

included calcium acetate (Ca(C2H3O2)2), calcium formate (Ca(HCOO)2), and calcium 

propionate (Ca(C2H5COO)2) and the inorganic salts  included sodium chloride (NaCl), 

calcium chloride (CaCl2), and aluminum chloride (AlCl3). The salt solutions were 

prepared by dissolving the solid salts in DI water at the same equivalent (normal) 

concentration as the acids. 
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Table 1.1.  Experimental treatments for the six different columns used in this study. 

 
 

 

 

All of the silica sand-packed columns were saturated with solutions (10, 100, or 

1000 µN) of organic acids, organic acid salts, inorganic salts, or biosurfactants using a 

peristaltic pump. Beginning with the least concentrated solution, σ* measurements were 

collected once for each acid, salt, or biosurfactant solution/concentration. The σw, pH, 

and temperature of each solution were measured at the input and output into the sand-

packed columns using microelectrodes. The average value of each variable was 

determined.  Experimental uncertainty in the σw and pH measurements was calculated by 

averaging the input and output solution value, and calculating the standard deviation from 

the average. The columns were flushed with DI water (< 1 µS/cm) until the σw of the 

output DI water measured < 3 µS/cm before changing the type of solution. 

1.3.4. Mineral weathering by organic acids.  Two natural sand-packed columns 

were saturated with 100 µN acetic acid or a mix of 20 µN each of acetic (C2H4O2), 

benzoic (C7H6O2), citric (C6H8O7), formic (CH2O2), and propionic (C3H6O2) acid (Table 

1.1). In addition, a third column was saturated with a solution consisting of 10% tap 

water in DI water (pH ~6.8) to collect electrical measurements for comparison with the 

organic acid solutions. The natural sand-packed columns were saturated with the acetic 

acid, mixed acid, and 10% tap water solutions using a peristaltic pump, and the fluid in 

the columns was circulated for 30 min prior to collecting electrical and geochemical 

measurements. Electrical measurements were collected twice a week for the first three 

weeks of the experiment, then once every two weeks for the duration of the experiment. 

Fluid samples were collected periodically from the fluid reservoir for analysis of major 

Column # Sand Type Experimental Treatment(s)

1 Silica butyric acid, calcium chloride, calcium acetate, or calcium propionate

2 Silica acetic acid, propionic acid, calcium formate, or aluminum chloride

3 Silica sodium chloride, formic acid, or biosurfactant

4 Mixed Mineral 10% tap water water for 120 days

5 Mixed Mineral 100 µN acetic acid for 120 days

6 Mixed Mineral 20 µN acid mix for 120 days
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cations by ion chromatography. The σw, pH, and temperature were measured immediately 

after the electrical measurements were collected, using microelectrodes inserted through 

the removable cap on the fluid reservoir at the top of each column. The columns were 

stored at room temperature (23-25˚C) on a laboratory bench-top for the 120 day duration 

of the experiment. 

 

1.4. RESULTS 

The results of the variability tests conducted prior to the experiments indicate that 

errors were generally less than 0.4 mrad and 0.6% for the phase and magnitude, 

respectively, at 1 Hz. In addition, the temperature corrected experimental σ’ and σ” 

(25˚C) are reported at 1 Hz, as this frequency is close to typical frequencies used in field 

electrical measurements. Temperature correction factors for the σ’ and σ” were 

determined from laboratory experiments [Davis et al., 2006], and the σw measurements 

were automatically normalized to 25˚C by the conductivity microelectrode. Column 

variability and experimental uncertainty are shown as error bars in the figures. 

1.4.1. Contribution of Metabolic Byproducts to σ*.   

1.4.1.1 Effect of organic acids and salts.  The results from the silica sand-packed 

columns saturated with organic acids are presented in Figure 1.2. The σ’ values ranged 

from 4.15 x 10
-4

 S/m to 1.06 x 10
-3

 S/m at 10 µN, and 3.13 x 10
-3

 S/m to 1.78 x 10
-2

 S/m 

at 1000 µN, and increase with increasing strength for each organic acid (Figure 1.2a). In 

contrast, the σ” values ranged from 2.97 x 10
-7

 S/m to 7.06 x 10
-7

 S/m over the acid 

strength range measured, and show a slight decrease with increase in the acid strength 

(Figure 1.2b). Compared to the σ” values, the σ’ showed a greater relative magnitude of 

change (up to one order of magnitude) with increasing organic acid concentration. The σw 

values ranged from 1.67 x 10
-3

 S/m to 6.35 x 10
-3

 S/m at 10 µN, and 1.85 x 10
-2

 S/m to 

9.76 x 10
-2

 S/m at 1000 µN, and increased with increasing acid strength (Figure 1.2c). 

There is a decrease in the pH values from 3.4 to 4.2 at 10 µN and 2.5 to 3.4 at 1000 µN 

with increasing acid concentration (Figure .2d). Of the four organic acids measured, 

formic acid showed the highest σ’ and σw magnitude and lowest pH at the different 

concentrations (Figure 1.2). 
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Figure 1.2.  Bar graphs showing the direct effect of varying concentrations of organic 

acids on (a) real conductivity, (b) imaginary conductivity, and (c) fluid conductivity 

magnitude, and (d) pH. Complex conductivity measurements are reported at 1Hz. 

 

 

 

The results of measurements from silica sand-packed columns saturated with 

varying concentrations of organic acid salts and inorganic salts are presented in Figure 

1.3. Similar to the organic acids, increases in the σ’ values are concomitant with 

increasing concentration of organic acid salts (Figure 1.3a) and inorganic salts (Figure 

1.3b). The organic acids, however, have higher σ’ magnitudes at 10 µN and 100 µN 
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compared to the salts of equivalent concentration. Over the concentration range 

measured, σ” values range from 2.45 x 10
-7

 S/m to 7.22 x 10
-7

 S/m for the organic acid 

salts, and 2.91 x 10
-7

 S/m to 6.81 x 10
-7

 S/m for the inorganic salts. The σ” values show 

no consistent trend with increasing concentration for the organic acid salts (Figure 1.3c) 

or the inorganic salts (Figure 1.3d). The σw values for the organic acid salts and inorganic 

salts range from 3.37 x 10
-4

 S/m to 6.11 x 10
-4

 S/m at 10 µN, and 7.38 x 10
-3

 S/m to 2.02 

x 10
-2

 S/m at 1000 µN. Similar to the σ’ trends, the σw values increased with increasing 

concentration for the organic acid salts (Figure 1.3e) and inorganic salts (Figure 1.3f) , 

and both showed similar magnitudes of increase in σw values over the concentration 

range measured. The pH values range from a pH of 5.4 to 6.3 for the organic acid salts 

(Figure 1.3d), and a pH of 4.2 to 6.3 for the inorganic salts (Figure 1.3h) and of the salt 

solutions do not show a consistent trend with increasing concentration. 

1.4.1.2. Effect of biosurfactants.  The results of measurements for the silica 

sand-packed columns saturated with varying concentrations of biosurfactants are 

presented in Figure 1.4. The σ’ (Figure 1.4a) and σ” (Figure 1.4b) values increased with 

increasing biosurfactant concentration, although to a greater extent for the σ’ (one order 

of magnitude) compared to σ”. The σ’ increased from 6.23 x 10
-4

 S/m at 0.01%, to 1.32 x 

10
-2

 S/m at 0.5% biosurfactant concentration. Whereas, the σ” increased from 9.00 x 10
-7

 

S/m at 0.01%, to 1.80 x 10
-6

 S/m at 0.5% biosurfactant concentration. In addition, 

increases are also observed in both the σw (Figure 1.4c) and pH (Figure 1.4d) values with 

increasing concentration. The σw of the biosurfactant solutions increase from 2.43 x 10
-3

 

S/m to 6.38 x 10
-2

 S/m, and the pH values increase from 6.1 to 6.9 over the concentration 

range measured. 

 



 

 

33 

 

 

 

Figure 1.3.  Bar graphs showing the effect of varying concentrations of organic acid salts 

and inorganic salts on (a,e) real conductivity, (b,f) imaginary conductivity, and (c,g) fluid 

conductivity magnitude, and (d,h) pH. Complex conductivity measurements are reported 

at 1 Hz. 
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Figure 1.4.  Bar graphs showing the direct effect of varying concentrations of 

biosurfactants (RL1 + RL2) on (a) real conductivity, (b) imaginary conductivity, and (c) 

fluid conductivity magnitude, and (d) pH. Complex conductivity reported at 1 Hz. 
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Figure 1.5a and 1.5b, respectively. The pH values for the acetic acid and mixed acid 

treatments increased from 3.2 and 3.5, respectively, to near 7 on the second day of the 

experiment. The pH values continued to increase to maximum values of ~7.4 with the 
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the 10% tap water column increased from an initial value of 6.8 to 8.1 on day 2, before 

decreasing to ~7.3 by the end of the experiment. The σw values increased for all 

treatments (Figure 1.5b), most noticeably during the first week of the experiment. During 

the first six days, the σw measured for the acetic acid treatment increased from 7.56 x 10
-3

 

to 3.28 x 10
-2

 S/m, while the mixed acid and 10% tap water treatments increased by a 

similar σw magnitude over the first 14 days. The σw continued to increase for the mixed 

acid and 10% tap water treatments (by ~1.21 x 10
-2

 S/m), and to a lesser extent for the 

acetic acid treatment (by ~7.6 x 10
-3

 S/m) through the end of the experiment. The σ’ 

measured for the acetic acid treatment (Figure 1.5c) increased from an initial value of 

8.30 x 10
-3

 to 1.15 x 10
-2

 S/m on day 6, and continued to increase at a slow rate to the end 

of the experiment. The σ’ values for the mixed acid and 10% tap water treatments 

increased from 3.10 x 10
-3

 to 9.13 x 10
-3

 S/m by the end of the experiment. The σ” values 

increased by ~2.00 x 10
-5

 S/m from initial values through day 18 for all three treatments, 

then increased to the end of the experiment (Figure 1.5d).  

Temporal changes in calcium (Ca), potassium (K), and magnesium (Mg) 

concentrations during the weathering experiment are shown in Figure 1.6. Ca and Mg 

concentrations increased for all treatments (>10 mg/L), with the largest increase in Ca (41 

mg/L) and Mg (26 mg/L) observed for the acetic acid treatment (Figure 1.6b). 

 

1.5. DISCUSSION 

1.5.1. Contribution of Metabolic Byproducts to σ*.  The organic acid and 

biosurfactant solutions used in this experiment are comparable in type and concentration 

to those measured at hydrocarbon contaminated field sites undergoing biodegradation 

[e.g., Cozzarelli et al., 1994; Cozzarelli et al., 1995; McMahon et al., 1995; Atekwana et 

al., 2004c], and in laboratory biodegradation studies [e.g., Cassidy et al., 2001]. The 

results of this experiment showed that the σ’ and σw increase with increasing ionic 

strength of the metabolic byproduct. The σ’ shows a positive correlation (R
2
 > 0.99) on 

σw for all organic acids, biosurfactant (Figure 1.7a), and salt (Figure 1.7b) solutions.  
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These relationships are expected, as the σ’ parameter is largely dependent on σel 

associated with variations in σw [Archie, 1942], and increases in electrolyte concentration 

generally increase electrolytic conduction, and consequently the σ’ component of σ* 

[e.g., Lesmes and Frye, 2001; Slater and Lesmes, 2002]. 

 

 

 

 

Figure 1.5.  Measured temporal (a) pH, (b) fluid conductivity, (c) real conductivity, and 

(d) imaginary conductivity during weathering by 10% tap water, 100 µM acetic acid, and 

20 µM acid mix in natural mixed mineral composition sands. Complex conductivity 

measurements at shown at 1 Hz. Insert to the right of each graph shows the temporal data 

through 20 days. 
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Figure 1.6.  Temporal major cation concentrations measured during weathering by (a) 

10% tap water, (b) 100 µM acetic acid, and (c) 20 µM acid mix in natural mixed mineral 

composition sands. 
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law whereby the equivalent electrical conductivity of weak electrolytes (i.e., organic 

acids) increases more rapidly with dilution than strong electrolytes such as salts [e.g., 

Tower, 1905]. The highest σ’, σw, and pH magnitude was associated with formic acid 

compared to the other organic acids and salts which suggests that the σel magnitude is 

dependent on the organic acid present in addition to it’s concentration. Further, the 

observation that formic acid contributes more to σw than the other acids measured in this 

study, is consistent with previous studies that show the equivalent conductivity (at 

infinite dilution) decreases with the increasing number of atoms in the acid molecule 

[e.g., Tower, 1905]. Therefore, the contribution of organic acids to the σw magnitude at 

field sites may also be dependent on the major acid type present in pore water. 

In contrast to the σ’ results, the σ” results do not show a consistent response for 

organic acids, or organic and inorganic salts. While the solution concentration and the σw 

increase, we observe a slight decrease in the σ” for organic acids (Figure 1.7c), a slight 

increase in the σ” for biosurfactants, and no clear trend in the σ” for the salts (Figure 

1.7d). A possible explanation for the increase in the σ” for the biosurfactant solutions 

may result from the adsorption of the ionic surfactants at the surface of the aqueous 

solution leading to a reduction in the surface tension, an increase of the surface electric 

charge density, and the development of an electric double layer [Lesmes and Frye, 2001; 

Kolev et al., 2002]. In addition, previous studies have demonstrated that biosurfactants 

can alter the nature of interfaces (e.g., wettability) by aggregating at the interface of fluid 

phases (e.g., water/hydrocarbon, or water/air) and reduce the surface tension or interfacial 

tension at the interface [e.g., Rosen, 1989; Desai et al., 1997]. In contrast to the increased 

σ” response observed for the biosurfactants, there is a slight decrease in the σ” response 

from increasing concentrations of organic acids. The slight decrease in the σ” magnitude 

for the organic acids is coincident with decreased pH and increased σw (Figure 1.7e). 

While previous studies have shown that the effect of pH on σ* is secondary to ionic 

strength effects [Lesmes and Frye, 2001], we speculate that at relatively low 

concentrations of acids, variations in pH may have affected the properties at the fluid-

mineral interface (e.g., surface ionic mobility) and thus the σ” response. Further, Lesmes 

and Frye [2001] observed reductions in surface conductance and polarization at relatively 

low pH (pH 3), which was attributed to the pH being at the zero point charge for quartz 
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systems. This general observation is consistent with our results for organic acids, where 

increased concentration results in decreased pH and a slight decrease in the trend of σ” 

values.  

 

 

 

 

Figure 1.7.  Graphs showing the relationship between (a, b) real conductivity, (c, d) 

imaginary conductivity, (e, f) pH and fluid conductivity for sand with different treatments 

of organic acids, salts, and biosurfactant solutions. Complex conductivity measurements 

are reported at 1 Hz. 
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The results of this experiment show that σ’ measurements are sensitive to 

relatively low concentrations of organic acids and biosurfactants, such as those found in 

hydrocarbon biodegradation environments. While the concentrations of organic acids 

used in this study are similar to those found in field situations, these concentrations are in 

excess of that which is consumed or needed by the microorganisms in field environments 

[e.g., Cozzarelli et al., 1994]. We speculate that σ’ measurements may be useful for 

monitoring variations in metabolic byproduct concentration in field settings, in addition 

to other analytical geochemical techniques such as direct fluid sampling. 

1.5.2. Contribution of Mineral Weathering Products to σ*.  Acetic acid was 

chosen for single organic acid leaching as it is commonly reported in groundwater at 

hydrocarbon contaminated environments [e.g., Welch and Ullman, 1993; Cozzarelli et 

al., 1994; McMahon et al., 1995; Cassidy et al., 2001; Atekwana et al., 2004d]. The 

concentration of acetic acid used was intermediate in value between the values reported 

by Atekwana et al. [2004d; ~215-270 µN] and Cozzarelli et al. [1994; ~2.13-12.5 µN]. 

The mixed acid solution consisted of common organic acids found in hydrocarbon 

biodegradation environments [e.g., Welch and Ullman, 1993; Cozzarelli et al., 1994; 

McMahon et al., 1995; Atekwana et al., 2004d], and consisted of the combination of the 

five acids (at 20 µN each) which was designed to represent a total organic acid 

concentration of 100 µN. The 10% tap water solution was used for background 

measurements as a comparison with the organic acid solutions, as experimental 

measurements at a near neutral pH would allow us to investigate the effect of the acidity 

of the experimental solutions on the electrical measurements. 

The results of the weathering experiment show that the acetic acid (100 µN) 

treatment contributed more to conductivity magnitude (Figure 1.5), directly by increasing 

ionic strength and indirectly through mineral weathering (Figure 1.6), than lower 

concentrations of mixed acids (20 µN) or near-neutral solution (10% tap water). The 

temporal increases in the σw values are consistent with increases in ionic strength 

(concentration of cations) of the solutions (Figure 1.8a) and the relatively good linear 

correlation is observed (R
2
 >0.73) between σw and cation concentrations (Ca and Mg) 

suggest that cation concentration exerts a primary control on the σw values. The similarity 

of the results obtained from the mixed acid and 10% tap water (background) columns 
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suggest that the pH and electrical parameters were enhanced by more than just the 

presence of organic acids. We observed weathering of sands in the 10% tap water 

(background) column (Figure 1.6a), though the pH at the start of the experiment was near 

neutral (~6.8). Our results are consistent with those of Huang and Keller [1970] who 

observed a temporal increase in cation concentrations and increases in pH for silicate 

minerals (e.g., plagioclase feldspars) in DI water (with a starting pH of ~5.7-8.6). Hence, 

the presence alone of fluid in the mixed mineral-composition sand may have caused some 

mineral dissolution, similar to Huang and Keller [1970]. Huang and Keller [1970] noted, 

however, that the solubilities of major cations (e.g., calcium, magnesium) were higher in 

organic acid solutions compared to that of DI water. Furthermore, although we attribute 

the increase in cation concentrations to mineral weathering/leaching, we cannot exclude 

the role of ion exchange. 

There is a relatively good positive linear correlation between the temporal 

conductivity parameters (σw, σ’, and σ”) and cation concentrations (acetic acid column R
2
 

>0.73; mixed acid column R
2
 >0.96; 10% tap water column R

2
 >0.91) (Figure 1.8). The 

correlation between cation concentrations and the conductivity parameters suggests that 

the observed variations in σw values are primarily responsible for the changes in 

measured σ’. Further, the relatively weak dependence of σ” on σw may be attributed to 

increased surface charge density in the diffuse part of the electrical double layer [e.g., 

Lesmes and Frye, 2001; Slater and Lesmes, 2002]. 

1.5.3. Application of Results to Previous Studies.  Our results suggest that 

organic acids contribute more to σw than strong electrolytes at low concentrations. 

However, the contribution of organic acids to σw in field settings is unknown. For 

example, at a field site undergoing intrinsic hydrocarbon biodegradation Atekwana et al. 

[2004d] observed elevated σw (~8.4 x 10
-2

 S/m) and σb (~4.9 x 10
-3

 S/m) values, and 

measured elevated organic acids concentrations (~215 – 270 µN measured as acetic acid) 

in contaminated groundwater. While we cannot make a direct quantitative comparison of 

the σb results from Atekwana et al. [2004d] to our current study due to the fact that the 

sediment samples/conditions are not identical we can, however, present a general 

qualitative analysis based on the relationship between σw and concentration of acetic acid 

between the two studies. Based on our relationship between σw and concentration of 
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acetic acid (y = 0.000025x + 0.0035; R
2
 >0.98), we suggest that the acetic acid 

concentration measured by Atekwana et al. [2004d] will impart ~7.8 x 10
-3

 to ~8.9 x 10
-3

 

S/m, or ~9-11% to the total σw measured. Further, based on the relationship between σ’ 

and acetic acid concentration (y = 0.000004x + 0.0007; R
2
 >0.98), the organic acid 

concentration measured in the field by Atekwana et al. [2004d] will impart ~1.6 x 10
-3

 to 

~1.8 x 10
-3

 S/m, or ~3-4% to the total σb. Similarly, based on our σ’ results for 

biosurfactants (y = 0.0254x + 0.0004; R
2
 >0.99), the magnitude of biosurfactants at field 

concentrations of ~0.01% [Cassidy et al., 2002] likely imparts ~6.5 x 10
-4

 S/m to the total 

σb magnitude. We argue that although organic acids and biosurfactants contribute to ionic 

strength and thus the fluid and bulk conductivity, the cumulative effect of these metabolic 

byproducts is likely <12% of the total σw, and <5% of the total σb. Therefore, the direct 

addition of organic acids and biosurfactants to pore fluids cannot explain the total 

magnitude of the elevated bulk conductivity observed in hydrocarbon contaminated field 

sites undergoing biodegradation [e.g., Atekwana et al., 2004d].  

The results of weathering experiments support the findings of a field study by 

Atekwana et al. [2005], where a positive linear relationship was observed between total 

dissolved solids (TDS) and σb measured in a hydrocarbon contaminated aquifer. Elevated 

TDS values in the contaminated groundwater were coincident with higher dissolved ion 

concentrations. However, Atekwana et al. [2005] observed that zones with the highest σb 

did not correspond to the highest TDS values in pore water in those zones, and that only 

~50-60% of the measured σb from the contaminant fringe and core could be explained by 

TDS concentrations. Similarly, the results of the weathering experiment conducted during 

this study shows a positive correlations between the conductivity parameters and cation 

concentrations, suggesting that leaching of ions from the sands of mixed mineral 

composition is primarily responsible for the measured conductivity response. The results 

of our study further validate the conclusions presented by Atekwana et al. [2005], that 

mineral weathering is likely the primary contributor to the measured fluid conductivity 

response measured in the field. We infer from these observations that another 

mechanism, besides the contribution from mineral weathering, must be at work here.  
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We speculate that the presence of microorganisms and the physical alterations imparted 

by the microbes (i.e., biofilm formation), also contribute to the measured bulk 

conductivity response [e.g., Davis et al., 2006]. 

 

 

 

 

Figure 1.8.  Cross plots of Ca + Mg vs. (a) fluid conductivity, (b) real conductivity, and 

(c) imaginary conductivity measured during weathering by 10% tap water, 100 µM acetic 

acid, and 20 µM acid mix in natural sand of mixed mineral composition. Complex 

conductivity measurements are reported at 1 Hz. 
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In a study by Abdel Aal et al. [2004], increases in σel in biotic columns was 

attributed to variations in σw due to the addition of ions (e.g., Ca) from enhanced mineral 

weathering by organic acids. There was a decrease in pH (~16%), and an increase in Ca 

concentration (120%), σw (80%), σ’ (100%), and σ” (120%) in biotic sand columns after 

36 weeks of active microbial metabolism. While the Abdel Aal et al. [2004] study did not 

measure organic acid concentrations, the authors attributed the decreased pH and 

increased Ca to organic acid production and weathering by the acids. The pH, Ca 

concentration, and σw results are similar in magnitude of change relative to the results of 

our current study from sands treated once with 100 µN acetic acid for 17 weeks.  In the 

weathering experiment, we observed an increase in the pH (29%), Ca concentration 

(133%), σw (112%), σ’ (63%), and σ” (42%).  The magnitude of change in the σ’ and σ” 

observed by Abdel Aal et al. [2004] are larger than the values measured in this study, 

perhaps underscoring the important role of the direct presence of microbes on σ* [e.g., 

Ntarlagiannis et al., 2005b; Davis et al., 2006]. This difference may result from the fact 

that our experiments were abiotic, while the experiments conducted by Abdel Aal et al. 

[2004] were biotic. The presence or absence of microbes may explain the differences 

observed between the σ’ and σ” response between the two studies. We suggest that the 

results of our abiotic experiments may provide further evidence for the importance of the 

direct contribution by microbes with regards to the measured σ’ and σ” in biotic 

laboratory studies [Abdel Aal et al., 2004]. 

 

1.6. SUMMARY AND CONCLUSIONS 

The primary purpose of this research was to decouple the complex microbial-

induced physical and chemical transformations inherent during biodegradation, 

specifically the contribution of metabolic byproducts, and quantify the magnitudes of the 

geoelectrical response. The results presented here suggest the following important points: 

1. The direct presence of organic acids and biosurfactants contributes to the 

σel of porous media to a greater extent than the interfacial properties.  

2. Organic acids and biosurfactants directly contribute to conductivity 

magnitude, but their pure presence alone may only account for <12 % of 

the fluid conductivity and 5% of the bulk conductivity and therefore 
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cannot explain the total magnitude of the anomalous conduction and 

polarization observed in previous field [e.g., Atekwana et al., 2004] and 

laboratory studies [e.g., Abdel Aal et al., 2004].  

3. Mineral weathering promoted by organic acids may be the primary 

contributor to the elevated conductivity values observed in previous field 

studies such as Atekwana et al. [2005], however, the contribution by 

mineral weathering products cannot completely account for the anomalous 

bulk conductivity response.  

4. In addition to mineral weathering products, we suggest that the 

conductivity response observed in hydrocarbon biodegradation studies 

[e.g., Abdel Aal et al., 2004] may also result from the direct presence and 

activity of microbes (i.e., presence of biofilms and alteration of pore 

structure). 

Our study provides further fundamental understanding of the effect of microbial 

activity on electrical properties of geologic media. The results of our laboratory 

investigations suggest that σ* measurements, in particular σel, may be used as an 

indicator of microbial metabolism in porous media. Up-scaling these measurements may 

be of significant interest to investigations aimed at assessing subsurface microbial 

activity and presence of metabolic byproducts in MEOR and gas hydrate studies. For 

example, MEOR practices can employ the use of microorganisms that produce 

biosurfactants in-situ to help mobilize entrapped oil in reservoirs, improving oil recovery 

[e.g., McInerney et al., 2005; Youssef et al., 2007]. There are problems associated with 

the application of biosurfactant-mediated oil recovery, however, as insufficient 

quantitative evidence exists regarding the in situ production of biosurfactants at the 

appropriate quantities and rates needed to mobilize the oil [e.g., Bryant and Lockhart, 

2002; Youssef et al., 2007]. The results of our current study suggest that geophysical data, 

and in particular geoelectrical measurements, may provide the additional information 

needed to assess the production of biosurfactants in field environments. 
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2. MICROBIAL GROWTH AND BIOFILM FORMATION IN GEOLOGIC 

MEDIA IS DETECTED WITH COMPLEX CONDUCTIVITY MEASUREMENTS 

Reproduced by permission of American Geophysical Union:  

Caroline A. Davis, Estella Atekwana, Eliot Atekwana, Lee D. Slater, Silvia Rossbach, 

Melanie R. Mormile, 2006, Microbial growth and biofilm formation in geologic media is 

detected with complex conductivity measurements, Geophys. Res. Lett., 33, L18403, doi: 

10.1029/2006GL027312. Copyright 2006 American Geophysical Union. 

 

2.1. ABSTRACT 

Complex conductivity measurements (0.1-1000 Hz) were obtained from 

biostimulated sand-packed columns to investigate the effect of microbial growth and 

biofilm formation on the electrical properties of porous media. Microbial growth was 

verified by direct microbial counts, pH measurements, and environmental scanning 

electron microscope imaging. Peaks in imaginary (interfacial) conductivity in the 

biostimulated columns were coincident with peaks in the microbial cell concentrations 

extracted from sands.  However, the real conductivity component showed no discernible 

relationship to microbial cell concentration. We suggest that the observed dynamic 

changes in the imaginary conductivity (σ”) arise from the growth and attachment of 

microbial cells and biofilms to sand surfaces. We conclude that complex conductivity 

techniques, specifically imaginary conductivity measurements are a proxy indicator for 

microbial growth and biofilm formation in porous media. Our results have implications 

for microbial enhanced oil recovery, CO2 sequestration, bioremediation, and astrobiology 

studies. 

 

2.2. INTRODUCTION 

Several laboratory studies have demonstrated the utility of geophysical methods 

for the investigation of microbial-induced changes in porous geologic media. The 

primary suggestion of these studies was that temporal variations in the geophysical 

signatures corresponded with microbial-induced changes in the geologic media, such as 

changes in pore fluid chemistry [Atekwana et al., 2004], redox conditions [Naudet and 
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Revil, 2005], sulfide mineral precipitation [Ntarlagiannis et al., 2005a; Williams et al., 

2005], increase in surface area resulting from attachment of microbes to mineral surfaces 

[Abdel Aal et al., 2004], or pore clogging due to the presence of microbial cells 

[Ntarlagiannis et al., 2005b]. Although the above studies have increased our 

understanding of microbial-induced changes on the geophysical response of geologic 

media, the direct contribution of microbial growth and biofilm formation on the 

geophysical response of geologic media remains unknown.   

Notable is the use of electrical conductivity in conjunction with other methods 

(e.g., pH), to detect changes in the chemical properties of pore solutions caused by 

microbial growth and metabolism in geologic media [e.g., Silverman and Munoz, 1974; 

Abdel Aal et al., 2004]. A laboratory column experiment by Ntarlagiannis et al. [2005b] 

showed a 15% enhanced polarization associated with the direct presence of dormant live 

(pure culture) bacterial cells in silica sands. Ntarlagiannis et al. [2005b] tentatively 

attributed this polarization enhancement at high cell densities to a combination of 

decreased ionic mobility and electron transfer associated with cell accumulation in pore 

throats.    

The work described in this letter advances the work of Ntarlagiannis et al. 

[2005b] by using an environmental (mixed) bacterial culture, and allowing for microbial 

growth and biofilm formation, being more similar to typical field conditions. 

Understanding the effect of microbial growth and biofilm formation on the geophysical 

response of geologic media has implications for microbial enhanced oil recovery 

(MEOR), CO2 sequestration, and bioremediation investigations, as well as studies 

focused on the development of techniques for the detection of extraterrestrial life. Here 

we show an apparent correlation between imaginary conductivity and microbial growth, 

and infer that imaginary conductivity measurements can be used as an indicator of 

microbial growth and biofilm formation in porous geologic media. 

 

2.3. METHODS 

2.3.1. Experimental Column Setup.  The experimental columns used in this 

study were 30 cm long (Figure 2.1) and constructed from 3.2 cm inner diameter polyvinyl 

chloride pipe (PVC). Two Ag-AgCl current injection electrode coils were installed 16 cm 
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apart in the column, and two Ag-AgCl potential electrodes (9 cm apart) were installed 

between the current electrodes. A fluid reservoir constructed of 7.6 cm PVC pipe was 

installed on top of each column to allow for fluid sampling. Columns were dry-packed 

with 20-30 mesh silica sand (99.8% silicon dioxide, 0.020% iron oxide, 0.06% aluminum 

oxide, 0.01% titanium oxide, <0.01% calcium oxide, <0.01% magnesium oxide, <0.01% 

sodium oxide, <0.01% potassium oxide). The sands were washed with deionized water 

and disinfected by autoclaving prior to being packed in the columns. All columns, tubing, 

and accessories were disinfected by rinsing with 70% ethanol.   

Two sets of electrical columns were constructed in duplicate, and a third column 

was constructed for solid phase analysis. One set was used for unstimulated (background) 

measurements (nutrients + diesel fuel) and one set for biostimulated (experimental) 

measurements (nutrients + diesel fuel + bacterial culture). Columns were saturated with a 

sterile 25% Bushnell Haas (BH) nutrient broth (Becton Dickinson; 50 mg/L magnesium 

sulfate, 5 mg/L calcium chloride, 250 mg/L monopotassium phosphate, 250 mg/L 

diammonium hydrogen phosphate, 250 mg/L potassium nitrate, 12.5 mg/L ferric 

chloride), diesel fuel, and the biostimulated columns were amended with a mixed 

bacterial culture that was cultured from sediments collected at a hydrocarbon 

contaminated site in Carson City, MI, USA. The mixed culture is known to contain 

hydrocarbon degraders such as strains of Variovorax and Stenotrophomonas. The fluid in 

each column was circulated for 30 min by using a peristaltic pump prior to electrical 

measurements, fluid sampling, and sand sampling. 

2.3.2. Complex Conductivity Measurements. Complex conductivity 

measurements (0.1-1000 Hz) were obtained by using a four-electrode technique (Figure 

2.1) based around a National Instruments (NI) 4551 dynamic signal analyzer [Vanhala 

and Soininen, 1995; Slater and Lesmes, 2002]. The impedance magnitude |σ| and the 

phase shift φ (between a measured voltage sinusoid and an impressed current sinusoid) of 

the sample were measured relative to a high-quality resistor. The real (σ’ = |σ| cos φ) and 

imaginary (σ” = |σ| sin φ) parts of the sample complex conductivity were then calculated.  
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The electrical measurements were made twice a week for the 60 day duration of the 

experiment. Experimental uncertainty in the electrical measurements was calculated by 

averaging the electrical data for duplicate columns, and calculating the standard deviation 

from the average. 

 

 

 

 

 

Figure 2.1.  Schematic diagram showing the experimental set up. A digital signal 

analyzer (DSA) was used to collect the low frequency electrical measurements. 

 

 

 

2.3.3. Sampling and Analyses.  Fluid conductivity (σw) and pH were measured 

using microelectrodes immediately after fluids were withdrawn from the fluid reservoirs 

at the top of the columns. BH broth was periodically added (day 18, and 31) to the fluid 

reservoir to maintain the fluid volume in the reservoir. Experimental uncertainty in the 

geochemical measurements was calculated by averaging the geochemical data for 

duplicate columns, and calculating the standard deviation from the average.  

Sand samples were collected from the sand sampling columns beginning on day 
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13 of the experiment, immediately after fluid samples were collected. The sand samples 

were used for (1) extraction of bacterial cells for direct microbial counts, and (2) 

environmental scanning electron microscope (ESEM) imaging of grain surface 

characteristics. Live and dead microbial cell numbers were determined by direct counting 

using an epifluorescent microscope [Bunthof et al., 2001]. Bacterial cells were extracted 

from 0.5g of wet sand using an extraction technique modified after Lehman et al. [2001]. 

After extraction, the bacterial cells were washed with 0.85% NaCl solution, stained, and 

prepared for direct counts using a Live/Dead BacLight Bacterial Viability Kit. The 

average live cell concentrations and average dead cell concentrations were calculated, 

and experimental uncertainty was determined by calculating the standard deviation from 

the average of duplicate counts.  

A portion of the sand samples collected from the columns were imaged using an 

ESEM. Images of the sand surface characteristics and attached microbial cells and 

biofilms were obtained by Hitachi High Technologies America, Inc. using a Hitachi 

S3400 ESEM fitted with secondary and backscattered electron detectors. The ESEM 

operating parameters varied depending on the surface characteristic being imaged, and 

ranged from 2.5-8.0 kV, 5.9-11.1 mm, 700x-3000x, for accelerating voltage, working 

distance, and magnification, respectively. 

 

2.4. RESULTS 

2.4.1. Complex Conductivity.  The complex conductivity measurements were 

corrected for changes in temperature effects using correction equation y = 0.0003x + 

0.0084 (R
2
 = 0.99) and y = 0.0000001x + 0.000002 (R

2
 = 0.98) at 25C, for the real and 

imaginary conductivity, respectively.  Temperature correction equations were determined 

from laboratory experiments designed to measure the effect of temperature variations on 

the complex conductivity measurements. Fluid conductivity values were automatically 

corrected for changes in temperature by the conductivity microelectrode.  

The complex conductivity measurements are shown in Figure 2.2a and 2.2b. We 

show the electrical data at 2 Hz, as this frequency is close to typical frequencies used in 

field electrical measurements. This was also the frequency at which our measurement 

error was lowest. The σ” in the biostimulated columns increased by ~280%  from 
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~2.0x10
-6

 S/m  on day 0 to peak values (~7.8x10
-6

 S/m) between day 18 and 23, before 

steadily decreasing to ~2.0x10
-6

 S/m on day 40. The magnitude of the σ” response in the 

unstimulated columns was relatively small compared to the biostimulated columns, 

increasing slightly and varying by ~1.5x10
-7

 S/m over the duration of the experiment and 

rarely exceeding the initial values at the start of the experiment. The σ’ (Figure 2.2b) 

showed a relatively steady increase over the duration of the experiment for both the 

unstimulated (up to ~1.5x10
-2

 S/m or ~28% increase) and biostimulated (up to ~1.6x10
-2

 

S/m or ~18% increase) columns. The σw (Figure 2.2c) of the biostimulated columns 

decreased slightly for the first few days (by ~5%) to ~8.0x10
-2

 S/m, before increasing 

slightly for the rest of the experiment.  The σw of the unstimulated columns varied to a 

greater degree (~12%) than the biostimulated columns, decreasing for the first 20 days by 

~12% to 7.5x10
-2

 S/m, before increasing to ~ 8.3x10
-2

 S/m by day 60. 

2.4.2. Microbial and Geochemical Analyses.  Temporal variations in the live 

and dead microbial cell concentrations (presented as cells/gram of wet sand weight) for 

both biostimulated and unstimulated columns are shown in Figure 2.2d. Live cell 

concentrations in the biostimulated column increased by ~230%, from ~3.6x10
4
 cells/g 

on day 13 to peak concentrations on day 23 (~1.2x10
5
 cells/g), before declining to 

~3.0x10
4
 cells/g on day 40. Although the dead cell concentrations within the 

biostimulated columns were generally lower than the live cell concentrations, they 

displayed a similar trend to the live cell concentrations, albeit to a lesser degree. The dead 

cell concentrations increased from ~4.6x10
3
 cells/g on day 13 to peak concentrations on 

day 23 (~1.9x10
4
 cells/g), and decreased to ~6.0x10

3
 cells/g on day 40. The microbial 

cell concentrations from the unstimulated column initially decreased during the first 30 

days of the experiment before increasing with values varying between ~2x10
3
 cells/g and 

2x10
4
 cells/g for the duration of the experiment (both live concentrations and dead 

concentrations).  The error associated with the cell concentrations was less than 1.8x10
4
 

cells/g and 1.5x10
4
 cells/g for the biostimulated column live and dead cell concentrations, 

respectively, and less than 1.2x10
4
 cells/g and 1.0x10

4
 cells/g for the unstimulated 

column live and dead cell concentrations, respectively.  
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A temporal decrease in pH was observed for both the biostimulated and 

unstimulated columns (Figure 2.2e). The biostimulated columns showed a relatively 

greater decrease (~7-6.3) than the unstimulated columns (~7-6.6). 

 

 

 

 

 

 

Figure 2.2.  Results of the measured (a) σ”, (b) σ’, and (c) σw, (d) microbial cell 

concentrations, and (e) pH.  (a-c and e) Closed black circles represent biostimulated 

column measurements, and closed gray symbols represent unstimulated column 

measurements.  Microbial cell concentrations (d) are shown as biostimulated column live 

cells (black closed circle), unstimulated live cells (gray closed circles), biostimulated 

column dead cells (black closed triangle), and unstimulated column dead cells (gray 

closed triangle). Error bars represent measurement uncertainty reported as standard 

deviation from average of duplicate measurements. 
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2.4.3. Grain Surface Characteristics.  We show four representative ESEM 

images of surfaces of sand samples obtained on day 23 and day 46 (Figure 2.3). The 

images from day 23 of the biostimulated column show a network of extracellular 

structures between sand grains (Figure 2.3a), as well as the attachment of individual 

bacterial cells (Figure 2.3b) to the sand surfaces. The image from day 23 of the 

unstimulated column (Figure 2.3c) shows the relatively smooth, uncolonized surface of a 

sand grain. Figure 2.3d shows a backscattered electron composition image of the surface 

of a sand grain from day 46 of the biostimulated column with features that may represent 

extracellular or biomat-like structures. 

 

 

 

 

Figure 2.3.  Environmental scanning electron microscope images of sand from (a & b) 

day 23 of the biostimulated column, (c) day 23 of the unstimulated column, and (d) day 

46 of the biostimulated column. Scale bar on each image represents 10 μm. 

 

 

 

2.5. DISCUSSION 

ESEM images confirm microbial growth and biofilm formation in the 

biostimulated column. The complex conductivity measurements show that changes in σ” 

generally paralleled those of the microbial counts, with a close correspondence in the 

(a) (b)

(c) (d)
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peaks and magnitude (up to 280%) of the σ” and that of the cell concentrations (up to 

230%) in the biostimulated columns (Figure 2.2a and 2.2d). Since the microbial cell 

concentrations were measured from microbial cells extracted from sand grains, the close 

correspondence of the peaks and magnitudes of change of both parameters suggest that 

the σ” response resulted directly from the microbial growth and attachment. The 

unstimulated column, however, did not show any close correspondence between cell 

concentration and σ”. 

From our results, we infer the following: the increase in microbial cell 

concentration (Figure 2.2d) and σ” observed in the biostimulated column (day 13-23) 

may be in whole or in part due to the increased attachment of cells/biofilms to the surface 

of sand grains, and/or the increased aggregation of cells into microcolonies [e.g., Watnick 

and Kolter, 2000]. The subsequent decrease in the live microbial cell concentration (day 

23-60), and corresponding decrease in σ” may be due to an increased rate of detachment 

[e.g., Watnick and Kolter, 2000] or death and lysis of cells [Mai-Prochnow et al., 2004], 

possibly due to limited nutrients/carbon source or from excessive cell density.  The idea 

of cell death and lysis, the process in which the cell disintegrates and the contents enter 

the bulk fluid, is a plausible explanation for not observing an increase in the dead cell 

concentration after day 30. 

This suggestion is further supported by the ESEM images of sand from the 

biostimulated column, which showed high numbers of attached cells and extracellular 

structures on day 23 (Figure 2.3a), while less attached biomass is apparent on day 46 

(Figure 2.3d). Whereas Ntarlagiannis et al. [2005] investigated the electrical response of 

live dormant cells and speculated on the cause of the electrical response, the ESEM 

images (Figure 2.3a) presented in this study, provides strong evidence to support our 

findings that the σ” response is associated with cell aggregation/biofilm formation. The 

ESEM image from day 23 of the biostimulated column (Figure 2.3a) showing the 

extracellular material between sand grains, looks similar to the conductive extracellular 

structures known as nanowires that have been found in recent studies [i.e., Reguera et al., 

2005; Gorby et al., 2006]. The nanowire structures have been documented to facilitate 

electron transport from cells to solid phase electron acceptors and typically develop under 

nutrient (terminal electron acceptor) limiting conditions [Gorby et al., 2006]. 
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Consequently, they may provide the necessary connections needed for charge transfer in 

microbially active systems and thus be responsible in part for the geoelectrical response 

observed in biostimulated porous material.  However, more laboratory studies are needed 

to confirm or refute this hypothesis. 

A relatively steady temporal increase in the σ’ was observed in both the 

biostimulated and unstimulated columns. We used pure silica sands to minimize 

weathering in the columns and therefore did not expect to observe any significant 

changes in σ’. Hence, we are not sure as to the cause for the changes in σ’. However, we 

speculate that the temporal increase in the σ’ may be due to the periodic addition of BH 

nutrients (Day 18 and 31) to the columns, which would increase the ionic concentration 

of the pore fluid.  This increase in the ionic concentration of the pore fluid is observed in 

the σw, albeit to a lesser magnitude. We note that Ntarlagiannis et al. [2005b] also 

observed changes in the σ’ in their experimental columns not explained by the fluid 

conductivity data.  

In conclusion, the results from this study provide evidence that complex 

conductivity measurements, specifically imaginary conductivity measurements, can be 

used as a proxy indicator of microbial growth, attachment, and biofilm formation in 

porous geologic media. We surmise that the observed polarization (σ”) response arises 

from the direct interaction of the attachment of microbial cells and biofilm development 

on mineral grain surfaces. These results further our understanding of the direct effect of 

microbial growth on electrical measurements, and have implications for geoelectrical 

investigations of environments with enhanced microbial growth/activity. Our work may 

lead to the application of complex conductivity measurements to field investigations, 

such as studies aimed at assessing the (1) integrity of subsurface biofilm barriers 

(biobarriers) used to remediate contaminants or seal reservoirs for CO2 sequestration and 

(2) progress of microbial activity during enhanced oil recovery. Furthermore, our work 

suggests the possibility of applying electrical measurements to investigations of life on 

other planets. 

 

 

 



 

 

61 

2.6. ACKNOWLEDGMENTS 

This material is based in part on work supported by the National Science 

Foundation under Grant No. OCE-0433869 and Grant No. OCE-0433739. We thank two 

summer Research Experience for Undergraduates (REU) students, Philip Bottrell and 

Joseph Heidenreich, for their laboratory assistance.  We also thank Jessica Christiansen 

for assistance with the microbial analyses. Discussions with Y. Gorby on nanowires are 

greatly appreciated. 

 

2.7. REFERENCES 

Abdel Aal, G.Z., Atekwana, E.A., Slater, L.D., and Atekwana E.A. (2004), Effects of 

microbial processes on electrolytic and interfacial electrical properties of 

unconsolidated sediments, Geophys. Res. Lett., 31(12), L12505, 

doi:10.1029/2004GL020030. 

Atekwana, E.A., Atekwana, E.A., Werkema, D.D., Allen, J.P., Smart, L.A., Duris, J.W., 

Cassidy, D.P., Sauck, W.A., and Rossbach, S. (2004), Evidence for microbial 

enhanced electrical conductivity in hydrocarbon-contaminated sediments,  

Geophys. Res. Lett., 31, L23501. 

Bunthof, C.J., van Schalkwijk, S., Meijer, W., Abee, T., and Hugenholtz, J. (2001), 

Fluorescent method for monitoring cheese starter permeabilization and lysis, 

Appl. Environ. Microbiol., 67, 4264-4271. 

Gorby, Y.A., Yanina, S., McLean, J.S., Rosso, K.M., Moyles, D., Dohnalkova, A., 

Beveridge, T.J., Chang, I., Kim, B.H., Kim, K.S., Culley, D.E., Reed, S.B.,  

Romine, M.F., Saffarini, D.A., Hill, E.A., Shi, L, Elias, D.A., Kennedy, D.W., 

Pinchuk, G., Watanabe, K., Ishii, S., Logan, B., Nealson, K.H., and Fredrickson, 

J.K. (2006), Electrically conductive bacterial nanowires produced by Shewanella 

oneidensis strain MR-1 and other microorganisms, Proc. Natl. Acad. Sci. USA, 

103(30), 11358-11363. 

Lehman, M.R., Colwell, F.S., and Bala, G.A. (2001), Attached and unattached microbial 

communities in a simulated basalt aquifer under fracture- and porous-flow 

conditions, Appl. Environ. Microbiol., 67(6), 2799-2809. 

 



 

 

62 

Mai-Prochnow, A., Evans, F., Dalisay-Saludes, D., Stelzer, S., Egan, S., James, S., 

Webb, J.S., and Kjelleberg, S. (2004), Biofilm development and cell death in the 

marine bacterium Pseudoaltermonas tunicate, Appl. Environ. Microbiol., 70, 

3232-3238. 

Naudet, V., and Revil, A. (2005), A sandbox experiment to investigate bacteria-mediated 

redox processes on self-potential signals, Geophys. Res. Lett., 32, L11405, 

doi:10.1029/2005GL022735. 

Ntarlagiannis, D., Williams, K.H., Slater, L., and Hubbard, S. (2005a), The low 

frequency electrical response to microbially induced sulfide precipitation, J. 

Geophys. Res., 110, G02009, doi:10.1029/2005JG000024.  

Ntarlagiannis, D., Yee, N., and Slater, L. (2005b), On the low frequency induced 

polarization of bacterial cells in sands, Geophys. Res. Lett., 32, L24402, 

doi:10.1029/2005GL024751. 

Reguera, G., McCarthy, K.D., Mehta, T., Nicoll, J.S., Tuominen, M.T., and Lovely, D.R. 

(2005), Extracellular electron transfer via microbial nanowires, Nat. Lett., 

435(23), 1098-1101. 

Silverman, M.P., and Munoz, E.F. (1974), Microbial metabolism and dynamic changes in 

the electrical conductivity of soil solutions: a method for detecting extraterrestrial 

life, Appl. Microbiol., 28(6), 960-967. 

Slater, L., and Lesmes, D.P. (2002), IP interpretation in environmental investigations, 

Geophysics, 67, 77-88. 

Vanhala, H., and Soininen, H. (1995), Laboratory technique for measurement of spectral 

induced polarization response of soil samples,  Geophys. Prospect., 43, 655-676. 

Watnick, P., and Kolter, R. (2000), Biofilm, city of microbes, J. Bacteriol., 182(10), 

2675-2679. 

Williams, K.H., Ntarlagiannis, D., Slater, L., Dohnalkova, A., Hubbard, S.S., and 

Banfield, J.F. (2005), Geophysical imaging of stimulated microbial 

biomineralization, Environ. Sci. Tech., 39(19), 7592-7600. 



 

 

63 

3. EFFECTS OF MICROBIAL GROWTH AND BIOFILM FORMATION ON 

ACOUSTIC WAVE PROPAGATION IN POROUS MEDIA 

3.1. ABSTRACT 

Acoustic wave data were acquired over a two-dimensional region of a microbial-

stimulated and an unstimulated sand column to assess the spatiotemporal changes in a 

porous medium caused by growth of a biofilm forming bacteria culture. Concurrent 

measurements of complex conductivity and fluid chemistry (i.e., pH) were also collected 

on the columns to assess the progress of the stimulated microbial growth. Acoustic 

signals recorded for the unstimulated sample were relatively uniform over the 2D scan 

region for the 29 day experiment duration. The biostimulated sample, however, exhibited 

a high degree of spatial variation in the acoustic amplitude measurements, with portions 

of the sample exhibiting increased attenuation (up to 73%) while other portions exhibited 

decreased attenuation (up to 45%) compared to baseline values. The acoustic amplitude 

changed significantly in the biostimulated sample between Days 5-7 of the experiment, 

consistent with a peak in the imaginary conductivity values. Peaks in the imaginary 

conductivity response associated with microbial growth in porous media have been 

previously shown to parallel peaks in attached cell concentrations and biofilm formation. 

Environmental scanning electron microscope imaging verified microbial cell attachment 

to sand surfaces and showed apparent differences in the structure and/or texture of 

attached biomass between regions of increased and decreased acoustic wave amplitude. 

We conclude from these observations that spatial and temporal variations in microbial 

growth and/or biofilm structure caused heterogeneity in the elastic properties, and 

therefore changes to the acoustic wave propagation in the porous media. Our results have 

significant implications for the use of acoustic measurements for assessing spatial and/or 

temporal variations in biomass distribution in subsurface environments necessary for 

validating bioclogging models. 

 

3.2. INTRODUCTION 

Bioclogging of porous media due to biofilm development is a phenomenon that 

can cause significant changes in the porosity and permeability of subsurface systems, 
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influencing fluid flow and transport. [e.g., Vandevivere and Baveye, 1992; Brovelli et al., 

2009], groundwater recharge [e.g., Rinck-Pfeiffer et al., 2000], and remediation efforts 

[e.g., Baveye et al., 1998]. Several numerical models and simulations have been 

developed to qualitatively forecast changes to the hydraulic properties of porous media 

from bioclogging [e.g., Taylor and Jaffé, 1990; Kildsgaard and Engesgaard, 2001; 

Thullner et al., 2004; Brovelli et al., 2009]. Limitations exist with the application of these 

models, however, as bioclogging processes are dynamic and influenced by many 

phenomena including the presence of initial heterogeneities in biomass distribution as 

well as in the physical properties of the porous medium [e.g., Brovelli et al., 2009]. One 

of the difficulties inherent with experimental modeling approaches is that quantitative 

information from the direct observation of biological growth and bioclogging is required 

from the subsurface. However, it is difficult to obtain these data at the appropriate 

spatiotemporal scales needed to validate or test the predictive models [Dupin and 

McCarty, 2000]. Therefore, further development of diagnostic techniques such as 

minimally invasive geophysical methods, which can provide information on the 

spatiotemporal distribution of subsurface heterogeneities and the effect on 

hydrogeological properties as a result of microbial growth, is essential. Development of 

such techniques would allow for the further validation of predictive models, such as 

bioclogging models, with implications for monitoring microbial growth, biofilm 

formation, and bioclogging distribution in situ. 

To date, most biogeophysical investigations have focused on geoelectrical 

techniques [Atekwana et al., 2006]. Apart from a few studies [e.g., Williams, 2002; 

Williams et al., 2005; DeJong et al., 2006; 2009], less attention has been given to explore 

the effects of microbial interactions with geologic media on seismic properties. While the 

Williams et al. [2005] and DeJong et al. [2006] studies have improved our understanding 

of the seismic signatures associated with microbial-mediated mineral precipitation, there 

is a need to expand these previous works to understand the fundamental seismic response 

of bacteria growth and biofilm formation in porous media in the absence of enhanced 

precipitation.  

The work described here advances the Williams et al. [2005] and DeJong et al. 

[2006] studies by investigating the influence of microbial growth and biofilm formation 
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on the spatiotemporal seismic properties of porous media using an acoustic two-

dimensional scanning method [e.g., Li et al., 2001] in the absence of enhanced 

precipitation. We show for the first time that variations in microbial growth and biofilm 

structure/texture can cause heterogeneity in the elastic properties of porous media, and 

thus variations in acoustic wave propagation. We suggest that acoustic measurements 

may (1) provide diagnostic semi-quantitative data for testing and validation of 

bioclogging models and numerical simulations used for assessing microbial induced 

changes in flow and transport properties, and (2) be used for assessing spatial and/or 

temporal variations in biomass distribution in subsurface environments (i.e., microbial 

enhanced oil recovery (MEOR), and engineered biobarriers). 

 

3.3. METHODS 

3.3.1. Experimental Column Setup.  Rectangular experimental columns were 

fabricated using 0.32 cm thick clear acrylic (Figure 3.1), and measured 10.2 cm by 5.1 

cm by 25.4 cm (width x depth x height).  Two sets of experimental columns were 

constructed; two columns for acoustic wave measurements (e.g., Figure 3.1a) and two 

columns for complex conductivity (electrical) measurements (e.g., Figure 3.1b). The 

electrical columns were constructed with two Ag-AgCl current injection electrode coils 

(16 cm apart), and two Ag-AgCl potential electrodes (9 cm apart) which were installed 

between the current electrodes (Figure 3.1b). In addition, a plastic divider was installed in 

the center of the electrical columns (Figure 3.1b,c), constructed from a 19 cm long 

section of 3.2 cm inner diameter (0.1 cm thick) polyvinyl chloride pipe cut lengthwise. 

Emplacement of the divider was deemed necessary to reduce noise in the electrical data, 

after calibration measurements using NaCl solutions of known fluid conductivity without 

the divider showed that the phase shift (φ) error exceeded 1 mrad at 10 Hz. This φ error is 

in excess of what has previously been reported by other studies using similar complex 

conductivity equipment (<0.5 mrad below 10 Hz) [e.g., Ntarlagiannis et al., 2005; Abdel 

Aal et al., 2006], and well beyond the relative φ accuracy (~0.2 mrad below 100 Hz) 

reported for this instrumentation by Slater and Lesmes [2002]. After placing the divider 

in the electrical columns the φ error decreased to <0.5 mrad, which was deemed to be an 

acceptable level.  
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Figure 3.1.  Schematic drawing showing a side view of the column setup for the (a) 

acoustic and (b) complex conductivity measurements. (c) Shows a top view of the 

complex conductivity columns. The 2D acoustic scan region measures 6cm x 7cm (width 

x height). 

 

 

 

The columns were wet-packed with 20-30 mesh silica sand (Ottawa, IL) 

consisting of 99.8% silicon dioxide, 0.020% iron oxide, 0.06% aluminum oxide, 0.01% 

titanium oxide, <0.01% calcium oxide, <0.01% magnesium oxide, <0.01% sodium oxide, 

<0.01% potassium oxide. Prior to packing, the sands were washed with deionized (DI) 

water and disinfected by autoclaving. Columns and accessory equipment were also 

disinfected by rinsing with a 70% ethanol solution. Prior to saturation with the 

experimental fluids, the sand-packed columns were saturated with sterile 25% Bushnell 

Haas (BH) nutrient broth (Becton Dickinson; 50 mg/L magnesium sulfate, 5 mg/L 

calcium chloride, 250 mg/L monopotassium phosphate, 250 mg/L diammonium 

hydrogen phosphate, 250 mg/L potassium nitrate, 12.5 mg/L ferric chloride) and baseline 

acoustic and electrical measurements were collected. After the initial background 

measurements were recorded, microbial growth was stimulated in two sand columns (one 

electrical and one seismic) by saturating with 25% BH nutrient broth, 30 mM glucose, 
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Pseudomonas aeruginosa PAO1 bacteria inocula, and 30 µg/mL Gentamicin antibiotic. 

The PAO1 strain is a Gram-negative, rod-shaped, biofilm forming bacteria culture [e.g., 

Klausen et al., 2003] commonly found in soil and water. The bacteria strain (specifically 

PAO1 Tn7-Gm-gfp) was obtained from the University of Denmark (Lyngby, Denmark), 

where previous studies with this bacteria strain have been conducted [e.g., Pamp and 

Tolker-Nielsen, 2007].  The other two columns (unstimulated columns) were used for 

background measurements and were saturated with 25% BH and Gentamicin antibiotic. 

Antibiotics were added to both the biostimulated and unstimulated columns to inhibit the 

growth of microorganisms other than the P. aeruginosa in the biostimulated column. As 

this was a static experiment, the fluid in the columns remained stagnant during this 

experiment and the columns were not fed with additional nutrients. 

3.3.2. Acoustic Wave Measurements.  A full-waveform acoustic wave imaging 

system was used to obtain two-dimensional point-by-point maps of the acoustic response 

of the samples [e.g., Pyrak-Nolte et al., 1999]. The acoustic imaging system used two 

water-coupled plane-wave transducers (1 MHz central frequency) as source and receiver.  

Water-coupled transducers were used to ensure the same coupling between the 

transducers and the sample at all locations on the sample and over time. The columns 

were placed in a water tank to a depth 2/3 the length of a column.  Using the acoustic 

mapping mode (C-scan), computer-controlled linear actuators (Newport 850-B4 and 

Motion Master 2000) were used to move the source and receiver in unison over a 60 mm 

by 70 mm region in 5 mm increments (Figure 3.1a).  A high-voltage pulse generator 

(Panametrics PR1500) was used to excite the source and to receive the transmitted signal. 

At each point in the 2D scan region, a 50 microsecond window of the transmitted signal 

was recorded and digitized with an oscilloscope (Lecroy 9314L). The entire 2D region of 

each column was scanned 2-3 times per week for the 29 day duration of the experiment.   

3.3.3. Complex Conductivity Measurements.  Complex conductivity (σ*) 

measurements were collected at 40 frequency intervals between 0.1 and 1000 Hz using 

instrumentation based around a two-channel National Instruments (NI) dynamic signal 

analyzer [e.g., Slater and Lesmes, 2002]. Current was injected through Ag-AgCl current 

electrode coils (Figure 3.1b), and the impedance magnitude (|σ|) and phase shift φ 

(between a measured voltage sinusoid and an impressed current sinusoid) of the sample 
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were measured at the Ag-AgCl potential electrodes relative to a high-quality resistor. The 

imaginary (σ” = |σ| sin φ) part of the complex conductivity was then calculated from the 

measured |σ| and φ, and the imaginary conductivity (σ”) is related to the polarization that 

occurs at interfaces [e.g., Lesmes and Frye, 2001]. Prior to starting the experiments, 

experimental uncertainty in the electrical measurements was determined from calibration 

measurements using NaCl solutions of known fluid conductivity (30-3000 µS/cm). The 

columns were then flushed with DI water prior to injection of the background and 

experimental solutions. Upon starting the experiment, electrical measurements were 

collected 2-3 times per week for the 29 day duration of the experiment. 

3.3.4. Sampling and Analyses.  Fluid samples were collected 1-2 times per week 

from the bottom valve of the columns. The fluid conductivity, pH, and fluid temperature 

were measured using bench-top probes immediately after fluids were withdrawn. Upon 

termination of the experiment, the columns were destructively sampled by withdrawing 

fluid from the bottom valve, and then withdrawing cores of the wet sand (core diameter 

~0.6 cm) in a grid-like fashion (1.5 cm by 1.5 cm grid) from the acoustic scan region. 

The sand cores were used for environmental scanning electron microscope (ESEM) 

imaging to characterize the surfaces of the sand grains. An FEI Quanta 600 ESEM 

operating at 25 kV, 14-89%, 5-20 °C, for accelerating voltage, relative humidity, and 

temperature, respectively, was used to image the sand grains. 

 

3.4. RESULTS 

3.4.1. Acoustic Wave Measurements.  The 2D acoustic scan images of the peak-

to-peak transmitted amplitude obtained from the biostimulated and unstimulated columns 

are shown in Figures 3.2 and 3.3, respectively. The 2D scans obtained from the 

biostimulated column Day 1 reveal the transmitted compressional wave amplitude as 

relatively uniform over the scan region with an average amplitude of 0.99 ± 0.03 V 

(Figure 3.2a). However, over time the amplitudes varied spatially within the scan region 

through the first week, and by Day 5 and 6 the average amplitudes measured 1.00 ± 0.24 

V and 0.80 ± 0.22 V, respectively. The 2D images began to show a persistent spatial 

trend in the amplitude values by Day 6 (Figure 3.4a), which remained relatively 

consistent through the end of the experiment on Day 29. The 2D image obtained on Day 
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29 exhibited an increase in amplitude up to 45% in some regions (i.e., Figure 3.2a; 

Location A), while other regions showed a decrease in amplitude of up to 73% (i.e., 

Figure 3.2a; Location E) compared to baseline values (Figure 3.4a). Figure 3.2b shows a 

30 microsecond waveform window collected from the biostimulated column (Figure 

3.2a) which documents amplitude changes. Overall, the compressional waves transmitted 

through the biostimulated column showed a decrease in amplitude (an average of 0.74 ± 

0.25 V), and a slight decrease in acoustic wave velocity (~4%). 

 

 

 

 

Figure 3.2.  (a) 2D acoustic wave amplitude scans from the biostimulated column for 

Days 1, 2, 5, 6, and 29. (b) Shows the acoustic waveforms collected from the 

biostimulated column for the same respective five days. Black vertical line on Day 1 scan 

shows the data location for the waveform plot; black box on Day 29 scan denotes 

location of data plotted in Figure 3.4 and ESEM images shown in Figure 3.6. 

 

 

 

Similar to the biostimulated column, the baseline 2D image from Day 1 of the 

unstimulated column (Figure 3.3a) was relatively uniform except the lower edges where 

slightly lower amplitudes were measured. Unlike the results from the biostimulated 

column, the 2D images collected from the unstimulated column (Figure 3.3a) show the 

amplitudes became more spatially uniform over time. The average amplitudes remained 
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relatively consistent and measured 0.92 ± 0.13 V and 0.90 ± 0.03 V for Day 1 and Day 

29, respectively.  In addition, the acoustic wave arrival times (Figure 3.3b) show a 

relative temporal consistency with no significant change in acoustic wave velocity 

observed. 

 

 

 

 

Figure 3.3.  (a) 2D acoustic wave amplitude scans from the unstimulated column for 

Days 1, 2, 5, 6, and 29. (b) Shows the acoustic waveforms collected from the 

unstimulated column for the same respective five days. Black vertical line on Day 1 scan 

shows the data location for the waveform plot; black box on Day 29 scan denotes 

location of data plotted in Figure 3.4 and ESEM images shown in Figure 3.7. 

 

 

 

Through five days prior to experimental stimulation, the temporal percent change 

in compressional wave amplitude was relatively similar for both the biostimulated 

(Figure 3.4a) and unstimulated (Figure 3.4b) samples. However, one day after 

biostimulation, the transmitted amplitudes deviate from the baseline values observed for 

the unstimulated column. By Day 5, the wave amplitudes observed from the 

biostimulated column are highly variable, both increasing and decreasing in amplitude in 

the select region (Figure 3.2a; Locations A-E). After Day 6, the trend in amplitude 

continued through the end of the experiment with the exception of one data location from 
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the select region. Data location C exhibited increased values through Day 12 before 

decreasing to near baseline values on Day 29. The relatively small overall variation in 

amplitude (<37%) relative to Day -1 observed from the unstimulated column is consistent 

for all of the select data points plotted (Figure 3.3a; Locations A-E) and does not exhibit 

the same behavior as observed for the biostimulated column (Figure 3.4). 

 

 

 

 

Figure 3.4.  Graphs showing the temporal percent change in acoustic wave amplitude 

relative to Day -1 for the (a) biostimulated column, and (b) unstimulated column. 

Locations of the data points plotted here are shown in Figure 3.2 and 3.3 for the 

biostimulated and unstimulated columns, respectively. 

 

 

 

3.4.2. Complex Conductivity and Geochemical Measurements.  The results of 

the calibration tests conducted prior to the experiment indicate that experimental 

uncertainty associated with the φ measurements were generally less than 0.5 mrad at 10 

Hz. The experimental σ” results are reported at 10 Hz, as this is the frequency where the 

lowest phase shift error was observed during calibration measurements, and this 

frequency is close to typical frequencies used in field electrical measurements.  
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The results of the temporal σ” and geochemical measurements are shown in 

Figure 3.5. The σ” measured from the biostimulated column (Figure 3.5a) increased by 

~220% to peak values (2.29 x 10
-5

 S/m) on Day 5 relative to pre-injection (Day -1) values 

(7.16 x 10
-6

 S/m), before steadily decreasing to near baseline values on Day 20, and 

remained relatively consistent through Day 23. The magnitude of the σ” response 

measured from the unstimulated column was relatively small compared to the 

biostimulated column, varying by ~1.09 x 10
-6

 S/m over the duration of the experiment 

compared to 1.57 x 10
-5

 S/m for the biostimulated column. Relative to pre-injection 

values, σ” from the unstimulated column decreased by ~9.55 x 10
-7

 S/m (~89%) through 

Day 5, before steadily increasing to 2.17 x 10
-6

 S/m on Day 23, nearly ~103% above 

baseline values. Initial fluid conductivity values (Figure 3.5b) measured ~17% lower in 

the biostimulated column compared to the unstimulated column, and steadily increased 

from ~9.22 x 10
-2

 S/m through the end of the experiment. In contrast, the fluid 

conductivity values measured from the unstimulated column remained nearly constant 

around 1.13 x 10
-1

 S/m throughout the experiment, only decreasing slightly (by ~9%) 

between Day 15 and 20. Like that of the fluid conductivity values measured for the 

unstimulated column, the pH values remained steady near a pH of 7 throughout the 

experiment (Figure 3.5c). The pH values measured from the biostimulated column, 

however, steadily decreased from a baseline pH value of 7 to near 4.4 on Day 12, and 

remained steady at a pH of 4.4 through Day 20. 

3.4.3. Sand Surface Imaging.  ESEM images obtained from sand samples 

collected from the biostimulated and unstimulated columns are shown in Figure 3.6. The 

ESEM images of sand sampled from an area of increased acoustic amplitude in the 

biostimulated column (Figure 3.2; Location A) were imaged with ESEM operating 

condition of 25 kV, 14%, 20°C, for accelerating voltage, relative humidity, and 

temperature, respectively. An ESEM image that is representative of the increased 

acoustic amplitude samples is shown in Figure 3.6a. This image shows a rough textured 

surface which appears to have a patchy covering of ‘biomaterial’ over some portions of 

the sand grain, while on other portions of the image the silica sand surface is clearly 

visible. Rod-shaped bacterial cells are present in this biomaterial, but not clearly 

distinguishable in this image (Figure 3.6a). The ESEM images of sand sampled from an 
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area of decreased acoustic amplitude in the biostimulated column (Figure 3.2; Location 

E) were imaged with ESEM operating condition of 25 kV, 89%, 5°C, for accelerating 

voltage, relative humidity, and temperature, respectively. An ESEM image that is 

representative of the decreased acoustic amplitude samples is shown in Figure 3.6b. In 

contrast to the previous ESEM image (Figure 3.6a), the images obtained from the area of 

decreased acoustic amplitude (Figure 3.6b) show the surface of a sand grain which 

appears to be completely draped or covered in a smooth biomaterial, with several holes 

and void-spaces. This image also shows the presence of attached rod-shaped bacteria on 

top of the biomaterial as well as what appears to be a layering of bacteria cells seen on 

the inner sides of the void-spaces. We note that during ESEM imaging of the increased 

amplitude sand samples (Figure 3.2a; Location A), individual bacterial cells were not 

clearly distinguishable until the operating temperature of the ESEM was raised from 5 to 

20°C, and the relative humidity was decreased from 89% to 14%, which effectively dried 

out the sample/biomaterial. However, individual cells and attached biomass on sand 

samples collected from Location E (Figure 3.2a), were evident immediately upon 

viewing with the ESEM (at 5°C and 89%) and remained virtually the same in appearance 

when the temperature was increased to 20°C (images not shown).  

The ESEM images of sand samples obtained from the unstimulated column 

(Figure 3.3a; Location C) were imaged with ESEM operating conditions of 25 kV, 89%, 

5°C, for accelerating voltage, relative humidity, and temperature, respectively, and a 

representative image is shown in Figure 3.6c. This image shows the irregular or 

hummocky surface of a silica sand grain (Figure 3.6c), with no apparent bacteria cells or 

biomass. 
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Figure 3.5.  Temporal results of the (a) imaginary conductivity (σ”), (b) fluid 

conductivity (σw), and (c) pH measurements. Complex conductivity results shown at 10 

Hz. Vertical dashed line represents experimental injection. 

 

 

 

 

4

5

6

7

8

-5 0 5 10 15 20 25

Time (days elapsed relative to bacteria injection)

p
H

8.00E-02

9.00E-02

1.00E-01

1.10E-01

1.20E-01

-5 0 5 10 15 20 25

Time (days elapsed relative to bacteria injection)

F
lu

id
 C

o
n

d
u

c
ti

v
it

y
 (

S
/m

)

0.00E+00

5.00E-06

1.00E-05

1.50E-05

2.00E-05

2.50E-05

-5 0 5 10 15 20 25

Time (days elapsed relative to bacteria injection)

Im
a

g
in

a
ry

 C
o

n
d

u
c

ti
v

it
y

 (
S

/m
)

1.0 x 10 - 5

2.0 x 10 - 5

0.0 x 10  0
σ
”

(S
/m

)

(A)

Time 
(days relative to experimental injection)

8.0 x 10 - 2

1.0 x 10 - 1

1.2 x 10 - 1

σ
w

(S
/m

)

p
H

8

7

6

5

4

-5 0 5 10 15 20 25

(B)

(C)

0

2

4

6

8

10

12

14

16

18

050

Time (Days)

C
l 
C

o
n

c
e

n
tr

a
ti

o
n

 (
m

g
/L

) S1-Cl

C1-Cl

S2-Cl

C2-Cl

Biostimulated Acoustic Column

Biostimulated Electrical Column

Unstimulated Acoustic Column

Unstimulated Electrical Column



 

 

75 

 

 

Figure 3.6.  Environmental scanning electron microscope (ESEM) images of sand 

samples collected from the biostimulated column (a & b) and unstimulated column (c). 

Images obtained from the biostimulated column from an area of (a) increased amplitude 

(Location A; Figure 3.2a), and (b) decreased amplitude (Location E; Figure 3.2a) on the 

2D acoustic scan. Location of the sand samples on the 2D scan are shown in Figure 3.2. 
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3.5. DISCUSSION AND CONCLUSIONS 

The experimental results presented in this study show a significant difference in 

the temporal and spatial acoustic amplitude between the biostimulated and unstimulated 

columns. The biostimulated column became more spatially variable over time and the 

unstimulated column more homogeneous over time. Differences or variability in acoustic 

amplitude can result from a number of various factors. Acoustic properties of porous 

media are generally dependant on the bulk modulus of the saturating fluid [e.g., Knight 

and Nolen-Hoeksema, 1990], the elastic moduli of the solid media [e.g., Ecker et al., 

1998], and the solid-fluid interactions [e.g., Clark et al., 1980]. Thus, changes in the 

elastic properties of a saturated porous medium will result in changes in the acoustic 

properties of the medium. Generally, decreases in acoustic amplitude result from 

biogenic gas production or the weakening of grain contacts in porous media, both of 

which reduce the elastic moduli and are manifested by delays and attenuation of acoustic 

waves. Increases in acoustic amplitude may result from increases in the bulk modulus of 

the solid media [e.g., Li et al., 2001] through the stiffening of grain contacts. The 

variability in the acoustic wave measurements presented here from the biostimulated 

column (e.g., Figure 3.2) suggests that more than one mechanism may be responsible for 

the variability in the spatiotemporal acoustic amplitude. 

Previous seismic studies have demonstrated that seismic methods are sensitive to 

the products of microbial activity in porous media, such as the production of biogenic gas 

[Williams, 2002] and enhanced biomineralization [Williams et al., 2005; DeJong et al., 

2006]. In a column-scale experiment, Williams [2002] investigated the effect of 

stimulated microbial biogenic gas (N2) production on acoustic (compressional) wave 

propagation in porous media. Williams [2002] observed gas bubble accumulation which 

was visible on the sides of the column, and strong attenuation of the acoustic wave 

signals consistent with regions of gas accumulation. In another column-scale experiment, 

Williams et al. [2005] observed strong attenuation of the compressional wave signals 

associated with microbial-mediated precipitation of sulfide minerals. They attributed the 

variations in attenuation of the acoustic signals to changes in the aggregation state of the 

crystalline sulfides and the non-uniformity of biomineralization along the length of the 

column which produced a heterogeneous distribution of elastic properties and pore 
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geometries [Williams et al., 2005].  DeJong et al. [2006] used a bender element method 

to monitor shear waves in soils undergoing microbial-induced calcite precipitation and to 

nondestructively assess the engineering properties of the soil. The authors observed an 

increase in the shear wave velocity following nutrient injection and the progressive 

microbial-induced cementation of the soil particles [DeJong et al., 2006]. Based on the 

fact that mineral precipitation was not induced or enhanced in our current experiment, 

and no large gas bubble formation was observed on the sides of the biostimulated 

columns (unlike that of Williams [2002]), we suggest that a different mechanism or 

mechanisms may be responsible for the observed amplitude variability in the 

biostimulated sample. 

ESEM imaging of sand grain surface characteristics from the biostimulated 

column confirm microbial cell and attachment of biomaterial (Figure 3.6a & b), and show 

that no enhanced microbial growth was present in the unstimulated column (Figure 3.6c). 

The bacteria culture stimulated in this study (P. aeruginosa) is capable of producing 

different forms of biofilms, depending on the environment [e.g., Friedman and Kolter, 

2004], and formation of these biofilms is documented to occur in a sequential process 

[e.g., Davey et al., 2003; Klausen et al., 2003]. Davey et al. [2003] describes five 

different physiologies over the course of biofilm development by P. aeruginosa, 

including: (1) initial reversible attachment, (2) irreversible attachment, (3) maturation 

through layering of bacterial cell clusters, (4) maturation of cell clusters and maximum 

layer thickness, and (5) dispersion of bacteria cells from within the inner portion of the 

biofilm. In addition to the relative sequence of biofilm development described Davey et 

al. [2003], the authors also provided a relative timeframe for this development, where the 

third stage (or physiology) occurred at ~3 days of growth, the fourth stage after ~6 days 

of growth, and the fifth stage after ~9-12 days. Klausen et al. [2003] observed that the 

basic P. aeruginosa biofilm structure did not change appreciably after day 7, although the 

accumulation of biomass within the biofilm on day 7 had not yet reached a plateau. 

Therefore, the authors referred to the 7 day old biofilms as being mature biofilms. 

Further, Davey et al. [2003] stated that all stages of the sequential development may be 

present at the same time during the maturation of the biofilm. In addition, one 

characteristic of the P. aeruginosa biofilms described in the literature [e.g., Davey et al., 
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2003; Pamp and Tolker-Nielsen, 2007] is the presence of macrocolonies surrounded by 

large void spaces or open, dark fluid-filled channels, through which the lower levels of 

bacteria in the biofilm are thought to dispose of accumulating waste products. The results 

of the ESEM images obtained from the biostimulated column reflect these observations, 

showing apparent qualitative differences in the type and/or texture of the attached 

biomass or biofilms on the surface of the sand grains by the end of the 29 day 

experiment. Consequently, differences in the type and/or texture of the attached 

biomass/biofilms in the biostimulated column appear to reflect differences in the 

measured acoustic amplitude.  

The thickness and morphology of biofilms can be readily quantified using a 

variety of microscopy techniques such as a confocal scanning laser or atomic force 

microscopy.  Unfortunately, due to the roughness of the sand grains and the inherent 

difficulties of making such measurements when  biofilms are found in geologic material 

we are unable to use the above microscopy techniques to measure or quantify the amount 

of biofilm (i.e., thickness) between areas of variable acoustic amplitudes. Hence, we 

present a qualitative interpretation based on our analysis of a library of ESEM images 

obtained from areas of different amplitude variations in the columns and provide 

representative images to illustrate our point.  We observe that areas of increased 

amplitude were shown to have cells embedded in a highly hydrated matrix of 

biomaterial/film (Figure 3.6a) with a very rough texture, and discontinuous in coverage 

of surface of the sand grains. Whereas areas of decreased amplitude were observed to 

show bacterial cells within a continuous covering of biomaterial having a smoother 

texture (Figure 3.6b), with numerous void spaces or channels present. In contrast, the 

acoustic results from the unstimulated column show the acoustic properties of the sand 

homogenized over time which is attributed to settling within the sample (Figure 3.3a) and 

the ESEM shows a sand surface devoid of bacterial cells. We infer from these results that 

spatial variations in acoustic amplitude may result from the non-uniform distribution of 

biomass in porous media which affect the grain-to-grain coupling, pore geometry and 

elastic/viscoelastic response of the medium.  

Physically, the presence of biofilms may alter grain contact coupling by 

decreasing the volume and size of pores, altering the pore throat geometry or providing 
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additional coupling among grains, all of which affect the sediment matrix stiffness and 

the elastic and/or visco-elastic moduli of the media. In addition, if the microbial-induced 

alterations are not uniformly distributed throughout the sediment, then the sediment 

textural and mechanical properties may vary spatially leading to spatial heterogeneity in 

the seismic signatures (i.e., scattering). Variations in pore geometries and elastic 

properties between regions of highly colonized, dense areas of biofilm and those with a 

patchy distribution of biomass may affect local permeability and pore pressure. When the 

porous media is excited by the passing acoustic wave, grain scale heterogeneities (i.e., 

pore shape, saturation) will induce pressure gradients and cause pore fluid to be squeezed 

from compliant to less compliant regions. This movement of fluid results in viscous 

dissipation or ‘squirt-flow’ mechanisms [e.g., Palmer and Traviolia, 1980, Mavko and 

Jizba, 1991]. Thus, we propose that spatially non-uniform biofilm formation alters the 

pore geometry and elastic moduli that results in heterogeneous attenuation. 

In addition to the spatial variability in the acoustic wave amplitude, there is also 

significant temporal variability measured in the biostimulated column, as shown in the 

time-progression 2D acoustic maps (Figure 3.2a). Significant changes in the acoustic 

wave properties occurred in the biostimulated column between Day 5 and Day 7 of the 

experiment (Figure 3.2a; 3.4a).  These observed acoustic changes are consistent with a 

peak in the imaginary conductivity values on Day 5 (Figure 3.5a). In our earlier work 

[Davis et al., 2006], we demonstrated that imaginary conductivity measurements are 

uniquely sensitive to the physicochemical properties at grain-fluid interfaces, and showed 

that imaginary conductivity measurements may be used as a proxy indicator of microbial 

growth, attachment, and biofilm formation in porous media. In this earlier work, we 

observed peak increases in imaginary conductivity that generally paralleled peak 

increases in attached microbial cell concentrations and biofilms. While we did not 

measure the concentration of attached biomass in the current experiment, our complex 

conductivity results are identical to the study by Davis et al. [2006]. Thus we suggest that 

the peak changes observed in the imaginary conductivity response may reflect a peak in 

the concentration of attached biomass on Day 5. Based on this assumption, we infer that 

the variations in the acoustic amplitude that occurred between Day 5 and 7 are associated 

with the change in physical properties of the medium caused by peak microbial 
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attachment and biofilm formation. We also note that there is a remarkable similarity in 

the temporal acoustic and electrical data presented here, and the relative timeframe for 

biofilm development presented by Davey et al. [2003]. This may be further evidence that 

biofilm development is a primary contributor to the observed geophysical response. 

Similar to Davis et al. [2006], we observed a consistent decrease in the imaginary 

conductivity after peak values were observed and for the remaining duration of the 

experiment. This decrease in the imaginary conductivity may be attributed to increased 

rates of detachment, dispersion, and/or cell death potentially due to nutrient limitations 

[Davis et al., 2006; Abdel Aal et al., 2008]. A possible reason for the suggested increase 

in cell death or detachment may be the result of the accumulation of waste products (e.g., 

organic acids) and that the low pH conditions that developed over time in the 

biostimulated column contributed to the death of the cells. In contrast to the imaginary 

conductivity, the acoustic wave amplitude after Day 10, remained relatively constant 

through the end of the experiment (Figure 3.4a). While dead cells have no electrical 

properties and hence the decrease in imaginary conductivity after day 5 [e.g., Abdel Aal 

et al., 2008], it is possible that the EPS and biomass remained in the pore spaces and 

continued to affect the elastic properties and pore geometries of the porous media. The 

initial lower fluid conductivity values measured in the biostimulated columns, compared 

to the unstimulated columns, may have been the result of microbial utilization of the 

nutrient media in the biostimulation fluid prior to injection, and before microbial 

production/accumulation of waste products, such as organic acids. Temporal increases in 

the fluid conductivity values may be related to the accumulation of these waste products, 

and is consistent with the temporal decrease in pH resulting from organic acid 

production. Davis [2009; Chapter 2] show that increases in organic acid concentration 

increases fluid conductivity, which would be consistent with the data presented in this 

study. 

Understanding the mechanical properties of biofilms is important for assessing 

biofilm processes and behavior, as well as for the control of biofilms in industrial and 

medical environments (attachment and detachment) [Stoodley et al., 1999; Ahimou et al., 

2007]. Rheological measurements of biofilms have shown that biofilms exhibit linear 

viscoelastic behavior [Stoodley et al., 1999; Klapper et al., 2002; Ahimou et al., 2007] 
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and the acoustic/seismic response of a medium depends on the rheological properties of 

the medium. Thus the changes in viscoelastic properties of biofilms as they develop and 

evolve over time suggest that seismic geophysical techniques can be used to assess 

biofilm distribution and processes in field situations.  Biofilms are soft and gelatinous in 

nature [Ahimou et al., 2007]. Although several studies have investigated the rheological 

properties of biofilms in laboratory settings [e.g., Ahimou et al., 2007], it is not known 

how such soft gelatinous material affect seismic wave propagation in porous media in the 

absence of mineral precipitation. Such an understanding is critical for assessing the utility 

of seismic geophysical techniques for imaging biofilm spatial heterogeneity and their 

effects in porous media in field settings. 

The results presented in our study suggest acoustic imaging techniques are 

sensitive to spatiotemporal changes in porous media that result from enhanced microbial 

growth of a biofilm forming bacteria culture, in the absence of biomineralization. We 

observe relatively high spatial variability in the acoustic amplitude measured from initial 

conditions of nearly homogeneous amplitudes in the biostimulated column (Figure 3.2a), 

while no significant changes were observed in the unstimulated column (Figure 3.3a). 

The relative high spatial variability observed in the acoustic data from our current study 

suggests that enhanced microbial growth has a variable effect on the elastic properties of 

porous media. We note that a recent numerical model study by Brovelli et al. [2009] to 

simulate bioclogging in porous media demonstrated that the rate and patterns of 

bioclogging development were sensitive to the initial distribution of the biomass. Hence, 

while the exact microbial-induced mechanisms for the variations in amplitude are yet 

unclear, we speculate that the differences in amplitude may arise from a non-uniform 

distribution of microbial activity or possible heterogeneity in the biomass distribution and 

biofilm morphology (e.g., variations in biofilm thickness, roughness, hydration, 

simultaneous attachment to multiple grains, etc).  

The results presented in Figure 3.2a are qualitatively similar to porosity and 

hydraulic conductivity evolution due to biomass distribution as observed in  Brovelli et 

al., [2009, Figure 13]. Thus, we suggest that the acoustic wave spatial and temporal 

results presented here would be beneficial as an additional tool for bioclogging 

model/simulation validation. Hence up-scaling to field scale could help provide 
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information on spatiotemporal distribution of biomass/bioclogging development and 

changes in hydraulic properties allowing for the optimization of amendment-based in situ 

remedial strategies. Further, MEOR activities involving the in-situ growth of 

microorganisms and biofilm formation for the selective plugging of highly permeable 

zones may also benefit from such techniques as acoustic wave measurements. 
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4. SELF-POTENTIAL SIGNATURES ASSOCIATED WITH AN INJECTION 

EXPERIMENT AT AN IN-SITU BIOLOGICAL PERMEABLE REACTIVE 

BARRIER 

4.1. ABSTRACT 

Strategies available to evaluate the performance of in-situ permeable reactive 

barriers (PRB) are currently not well developed, and often rely on fluid and media 

sampling directly from the PRB. Here, we report on the results of a field experiment 

conducted to investigate the utility of the self-potential (SP) method as a minimally 

invasive technique to monitor in-situ PRB performance. Our field study was conducted at 

an in-situ biological PRB in Portadown, Northern Ireland, that was emplaced to assist in 

the remediation of groundwater contamination (e.g., hydrocarbons, ammonia) that 

resulted from the operations and waste disposal practices of a former gasworks. Borehole 

SP measurements were collected during the injection of contaminant groundwater slugs 

in an attempt to monitor/detect the response of the microbial activity associated with the 

breakdown of the added contaminants into the PRB. In addition, an uncontaminated 

groundwater slug was injected into a different portion of the PRB as a ‘control’, and SP 

measurements were collected for comparison to the SP response of the contaminant 

slugs. The results of the SP signals due to the contaminant injections show that the 

magnitude of the response was a relatively small (<10 mV) yet consistent decrease during 

both contaminant injections. The net decrease in SP recorded during the contaminant 

injections slowly rebounded to near background values through ~44 hours post-injection. 

The SP response during the uncontaminated injection, however, showed a slight though 

negligible increase (~1 mV which was within our margin of error) in the measured SP 

signals, in contrast to the contaminant injections. Based on the difference in SP response 

between the contaminated and uncontaminated injections, we suggest that the responses 

are likely the result of differences in the chemistry of the injection types (contaminated 

vs. uncontaminated) and in-situ PRB groundwater. We argue that the SP signals 

associated with the contaminated injections are dominated by diffusion (electrochemical) 

potential, possibly enhanced by a microbial effect. 
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4.2. INTRODUCTION 

In recent years, permeable reactive barrier (PRB) systems have become a 

reasonable and cost-effective approach for the passive in-situ treatment of contaminated 

groundwater. The basis of PRB technology requires that contaminated groundwater flows 

through a confined area of reactive material whereby contaminants are retained or 

degraded by the treatment media through chemical, physical, or biological processes 

[e.g., Scherer et al., 2000; USEPA, 2001; 2002; Boshoff and Bone, 2005]. A variety of 

reactive media have been used in PRB applications, depending on the target contaminant, 

including zero-valent iron (ZVI), activated carbon, zeolites, organic materials, and 

synthetic media [USEPA, 2001; 2002]. In the case of biological PRB’s, the treatment 

material is essentially any media in which microbial activity is enhanced by the delivery 

of oxygen and/or nutrients to the system, thereby encouraging the biodegradation of 

contaminants [e.g., Shirazi, 1997; Sturman et al., 1995]. 

Irrespective of the type of reactive media, PRB applications are generally used for 

long-term remediation efforts, on the order of decades. Current strategies available to 

evaluate long-term PRB performance, however, are not well developed and often require 

the direct collection of groundwater for analysis of target contaminants and geochemical 

indicators, as well as the physical analysis of core samples [e.g., McMahon et al., 1999; 

Puls et al., 1999; Liang et al., 2001; Beck et al., 2002]. While few studies have been 

conducted to evaluate the long-term efficacy of PRB systems, recent evidence suggests 

that secondary biogeochemical processes (e.g., mineral precipitation, gas accumulation) 

may have negative affects on barrier media [e.g., Zolla et al., 2007]. Mineral 

precipitation, for example, can clog the pore spaces of barrier materials over time. This 

pore clogging can lead to reductions in porosity, hydraulic conductivity, and chemical 

reactivity [e.g., Liang et al., 2003; Phillips et al., 2003; Zolla et al., 2007], and thus 

degrade the efficiency of the PRB system. In addition to the need for chemical and 

physical studies to investigate the long-term effectiveness of PRB media, there is also a 

need for the development of methods/tools to assist in the assessment of in situ barrier 

performance. Here, we investigate the potential utility for the minimally invasive self-

potential (SP) geophysical method to be used as a tool for monitoring PRB performance. 

In recent years, the SP method has received greater attention for its potential 
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application to environmental characterization, as it is directly sensitive to variations in 

subsurface parameters such as groundwater flow and chemistry. The SP method has been 

successfully applied to a variety of environmental field investigations, including the 

detection/approximation of water table location [e.g., Sailhac and Marquis, 2001; Darnet 

et al., 2003], delineation of preferential water flow pathways [e.g., Bogoslovsky and 

Ogilvy, 1970; Song et al., 2005], and delineation of contaminant plumes [e.g., Arora et 

al., 2007; Naudet et al., 2003; 2004]. In addition, there is increasing interest in SP to 

detect and monitor subsurface microbial processes [e.g., Arora et al., 2007; Ntarlagiannis 

et al., 2007; Slater et al., 2007b], as well as the performance and long-term monitoring 

capabilities of SP electrodes [e.g., Minsley et al., 2007; Slater et al., 2007b]. Further, 

previous studies have shown a strong relationship between self-potential signals and 

redox potential measurements [e.g., Naudet et al., 2004; Arora et al., 2007], particularly 

with respect to contaminant plumes. Arora et al. [2007] proposed a geobattery model in 

association with biodegradation of subsurface organic contaminants and attributed to 

strong microbial-induced redox gradients. Arora et al. [2007] hypothesized this natural 

battery to exist at contaminant plume boundaries between highly reduced, oxygen 

depleted areas within the plume and oxygen-rich conditions surrounding the contaminant 

plume. In order to complete the geobattery circuit, Arora et al. [2007] hypothesized that 

the presence of biomass and metallic mineral precipitates would act as an electron 

conductor. 

Based on the ideas presented by Arora et al. [2007], we hypothesized that the SP 

method may be useful for the delineation of microbial activity within an in-situ biological 

PRB, and in particular, microbial-induced redox gradients associated with the microbial 

break down of contaminants. To test this hypothesis, we conducted a field experiment 

where contaminant slugs were injected into a PRB and the SP signals were recorded in 

attempt to monitor the progress of the biodegradation of the addition contaminants. As 

such, the primary objective of this study was to investigate the potential for the minimally 

invasive self-potential (SP) geophysical method to be used as an indirect proxy of 

biological PRB performance. More specifically, we were interested in answering the 

following questions: (1) what is the magnitude of the SP signals associated with the 

injection of added contaminants into a biological PRB? (2) Will microbial activity 
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associated with the breakdown of the added contaminants in the PRB have a measurable 

effect on SP signals? Here, we report on the results of two injection experiments 

performed to investigate the SP signatures associated with the in-situ response of a 

biological PRB. The first experiment was designed to investigate the basic effect of 

added contaminants on SP signals in the PRB, possibly associated with microbial 

degradation of the additional contaminants. The second experiment (served as a control), 

which consisted of separate injections of contaminated and uncontaminated groundwater, 

was designed to: (1) confirm or refute the results of the first contaminant injection 

experiment, and (2) compare the SP signals associated with uncontaminated groundwater 

to that contaminated groundwater.  

The results of our investigation show that while we did not observe a measurable 

response in the SP signals that could be attributed to microbial activity, we did observe a 

persistent SP signal associated with the contaminant injections. Qualitative analysis and 

comparison of the SP datasets for the contaminated vs. uncontaminated injections 

suggests that the SP signals recorded in this study are primarily dominated by 

electrochemical (i.e., diffusion) potentials, similar to that of Maineult et al. [2006] due to 

differences in the chemistry of the injected slug(s) and resident PRB water. 

 

4.3. BACKGROUND 

4.3.1. Self-potential Method.  The SP technique is based upon the passive 

measurement of naturally occurring electric potentials in the subsurface with non-

polarizable electrodes in contact with the ground surface (or down borehole). Electrodes 

placed at the ground surface are connected via wire to a high impedance (>10 MΩ) 

voltmeter, and the electric potential is measured. The naturally occurring potentials can 

result from a variety of factors and/or mechanisms, and include electrokinetic, 

electrochemical, mineralization, redox, thermoelectric, and bioelectric potentials [e.g., 

Nyquist and Corry, 2002]. In natural environments, however, the SP response often 

results from a combination of mechanisms [e.g., Darnet and Marquis, 2004; Kulessa et 

al., 2003; Maineult et al., 2004]. We chose the SP method as a tool to monitor the 

response of the PRB for the current study because of the sensitivity of this method to 

groundwater fluxes (electrokinetic/streaming potential), ionic gradients 
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(electrochemical/diffusion potential) and redox potential gradients (electro-redox 

potential), all three of which may dominate the measured SP signals in this field study. 

4.3.1.1 Streaming Potentials.  An electrical field that develops in association 

with the flow of fluid through a porous medium is often called a streaming potential [e.g., 

Ernstson and Scherer, 1986]. Streaming potentials can arise from the drag of excess 

charge of the pore fluid during fluid flow through a porous medium [see description in 

Boleve et al., 2007], and the resultant electrical field commonly parallels the direction of 

fluid flow. Based on the classical description of electrokinetic theory [e.g., Sill, 1983], the 

current density is related to pore fluid pressure gradients and a streaming current coupling 

coefficient which is dependent on the zeta-potential (ζ), an interfacial property of the 

porous media [e.g., Boleve et al., 2007]. A proportional relationship exists between 

hydraulic gradient (Δh) and SP, which is described by a streaming coupling coefficient 

(C) [Fournier, 1989; Revil et al., 2003]. Thus, streaming potential is equal to: 

 

 ΔSP = CΔh       (1) 

where 

 
w

L
C


 ,      (2) 

and 

 
η

ζε0nc
L  .      (3) 

 

Where L is the reduced coupling coefficient, σw is fluid conductivity, c0 is 

material medium tortuosity, n is medium porosity, ε is fluid dielectric constant, η is fluid 

viscosity.  

A recently revised formulation of the electrokinetic theory developed by Revil 

and Leroy [2004] and Revil et al. [2005], and presented in Boleve et al. [2007], describes 

a direct dependence of streaming (electrokinetic) potential on the microstructure of 

porous media, and more specifically permeability. Herein, we will focus on the classic 

formulation of the electrokinetic theory, but it is worth mentioning the importance of the 

new formulation for investigating the effect of microstructure on SP signals.  
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4.3.1.2 Electrochemical Potentials.  An electrical field that develops in 

association with the flow of fluid through a porous medium is often called a streaming 

potential [e.g., Ernstson and Scherer, 1986]. Electrochemical potentials can arise from 

differences in chemical composition, such as concentration gradients and redox gradients, 

known as diffusion potentials and electro-redox potentials, respectively. Diffusion 

potentials can result from ionic concentration gradients in solutions with ions of differing 

ionic mobilities. This electrochemical effect is related to differences in fluid conductivity 

(σ1/σ2), and can be described by a combined electrochemical coupling coefficient (Ccomb) 

[Kulessa et al., 2003], where: 

  

ΔSP = Ccomb ln (σ1/σ2)      (4) 

 

Naudet et al. [2004] describe a relationship between SP and redox gradient (ΔEh), which 

is related through a redox coupling coefficient (CEh): 

 

ΔSP = CEh ΔEh      (5) 

 

A ‘geobattery’ model has been used to describe the strong SP response measured 

over subsurface ore deposits, associated with oxidation-reduction reactions [e.g., Sato 

and Mooney, 1960]. Previous researchers have described this geobattery model as being 

the shuttling of electrons from oxidized zones above the water table to reduced zones 

below the water table [e.g., Sato and Mooney, 1960; Timm and Moller, 2001]. Previous 

studies have also observed a similar relationship between SP signals and redox potential 

gradients associated with contaminant plumes [e.g., Naudet et al., 2003; 2004; Arora et 

al., 2007]. While the mechanisms responsible for this relationship are still not well 

understood, it has been suggested that a geobattery model may be used to explain this 

phenomena [e.g., Naudet et al., 2004]. According to Naudet and Revil [2005], biomass 

may act as a conductor to electrically connect the oxidized and reduced zones of 

contaminant plumes. 

4.3.2. Field Site.  The study site was located on the property of a former 

manufactured gasworks plant (~15,000 m
2
) in the town of Portadown, Northern Ireland 
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(Figure 4.1). Historical groundwater contamination at the site includes sulfate, cyanide, 

ammonia, and hydrocarbons [Doherty et al., 2006; Doherty, 2002]. The contamination 

resulted from the operation and waste disposal practices during the 150 year lifespan of 

the gasworks facility. The geology, hydrogeology, and microbiology of the site have been 

described previously by Doherty et al. [2006], Ferguson et al. [2003], and Doherty 

[2002]. 

 

 

 

 

 

Figure 4.1.  (a) Location of the field site in Portadown, Northern Ireland, and (b) diagram 

showing the location of the PRB on the property of the former gasworks (modified after 

Doherty [2002]). 

 

 

 

Laboratory-scale and on-site assessments concluded that enhanced monitored 

natural attenuation was the best approach to remediate the contaminated groundwater 

[CL:AIRE, 2005; Doherty, 2002]. To this end, a sequential biological permeable reactive 

0 m 60 m0 m 60 m0 m 60 m

Former Gasworks
Site Boundary

Slurry Wall

Borehole #2 
(uncontaminated)

Reference 
Electrode

Borehole TP11 
(contaminated)

PRB

Groundwater
Flow

Portadown, 
Northern Ireland

(a)

(b)



 

 

93 

barrier was installed on the former gasworks site (Figure 4.1) perpendicular to the 

direction of groundwater flow. Installed in 2001, the PRB consisted of a pre-cast concrete 

box (4.8m length, 2.4m width, 2.5m depth) filled with treatment media. Prior to entering 

the PRB, groundwater flows through the interceptor (I), which is a concrete manhole with 

no granular fill, to separate the light non-aqueous phase liquid (LNAPL) from the bulk 

fluid. Flow then enters the weir (W) which is a concrete manhole filled with coarse sand 

prior to entering the initial stage of the PRB. The initial stage of the sequential PRB 

(Figure 4.2) was filled with coarse sand, and aerobic biodegradation was encouraged 

through the addition of oxygen to the groundwater by air sparging. The final stage was 

filled with granular activated carbon (GAC) which acted as a back-up approach to sorb 

any organic contaminants not degraded by the initial biological unit. A slotted sheet of 

plastic separates the initial (sand) and final (GAC) stages of the barrier. Groundwater 

flow (estimated flow rate ~3.75 L/day; CL:AIRE [2005]) is directed to the PRB by slurry 

walls surrounding the former gasworks site (Figure 4.1), through the 20m3 reactor from 

west to east. Pea-gravel acts as a mixing zone at both the entrance and exit of the reactor. 

The treated groundwater is then discharged from the PRB to the east-northeast of the 

reactor. Fourteen permanent boreholes, installed during the emplacement of the PRB, are 

located over the length of the PRB (Figure 4.2). Each borehole consisted of solid plastic 

pipe (~6.5 cm inner diameter; ~3.5m length; ~12L volume) that extended from the 

bottom of the barrier to ~1 m above the ground surface. 

 

4.4. FIELD METHODS 

4.4.1. Self-potential Surveys.  SP measurements were collected using lead-lead 

chloride non-polarizing electrodes (after Petiau [2000]) emplaced down the 14 permanent 

boreholes installed in the PRB. One electrode was installed in each borehole, raised 

~0.1m off the barrier floor, and the connecting cable was secured in place with electrical 

tape. The borehole electrodes remained down-hole for the duration of the study (~10 

days). All SP data were collected as differential values relative to the reference electrode, 

located to the southeast of the PRB, in the uncontaminated portion of the site (Figure 

4.1). By convention, the reference electrode was connected to the negative terminal of the 

voltmeter. One surface SP electrode placed next to the reference electrode, was used to 
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measure diurnal SP variations at the beginning and end of each survey day to calculate 

and correct for average daily SP variations. Borehole electrodes were tested at the 

reference electrode before being placed and after removal from the boreholes to calculate 

electrode drift associated with the borehole SP measurements (+/- 1 mV). SP 

measurements were collected (manually) from each borehole before, during, and after the 

experimental injections. 

 

 

 

 

Figure 4.2.  Diagram showing the design of the sequential PRB, the location of boreholes, 

and direction of groundwater flow in-to and out-of the PRB. 

 

 

 

4.4.2. Water Quality Measurements.  Oxidation-reduction potential (Eh) and 

fluid conductivity measurements were performed on-site from fluid samples (~50 mL) 

collected from each of the 14 boreholes located on the PRB (except borehole MP5 which 

was not filled with water, but rather only slightly saturated at the bottom of the borehole). 

Prior to fluid sampling, each borehole was purged using a peristaltic pump to allow for 

representative sample collection. Water quality measurements were collected before and 

after the experimental injections. 

PRB

Concrete Boundary
Interceptor (I)

MP2 MP4 MP6 MP8 MP10

MP3MP1 MP5

MP12

MP7 MP9 MP11

Approx. position of 

divider between weir 

and initial stage 

Approx. position of slotted 

plastic sheet divider between 

initial and final stages

Contaminant 

Injection 

NaCl

Injection 

Inlet

Outlet

Weir (W)

Initial Stage

(Biological)

Final Stage

(GAC)

Boreholes



 

 

95 

4.4.3. Field Experiment.  The field study consisted of two phases, referred to as 

Experiment #1 and Experiment #2, to investigate the SP response of transient flow 

induced by the injection of groundwater. During Experiment #1, 50L of contaminated 

groundwater was injected near the entrance of the PRB (MP1), and the SP signals and 

water quality were monitored for two days following the injection. Experiment #2 

consisted of an injection of uncontaminated groundwater (50 L) into the middle of the 

barrier (MP7), followed by the injection of another 50L slug of contaminated 

groundwater (~2.5 hrs after the uncontaminated groundwater injection) at the entrance 

(MP1), and the SP and water quality were again monitored for two days following the 

injection(s). The contaminated groundwater used for the experimental slugs was collected 

from contaminated borehole TP11 (Table 4.1), located in the center of the contaminant 

plume to the southwest of the PRB (Figure 4.1). Prior to collection, the borehole was 

purged using a peristaltic pump. The contaminated groundwater from TP11 was collected 

in 10L increments. The 10L slug of contaminated groundwater was poured into the top of 

borehole MP1 near the inlet of the PRB (Figure 4.2). While the 10L slug was being 

injected, the TP11 borehole was allowed to recharge (~15 min) and this procedure was 

repeated until a total volume of 50L was injected.    

The uncontaminated groundwater used for Experiment #2 was collected from 

borehole BH2 (Table 4.1), located in an uncontaminated portion of the field site near the 

reference electrode (Figure 4.1). The sample collection and injection procedure was 

similar to that of the contaminant injections, except the fluid conductivity of the clean 

groundwater slug was adjusted artificially using NaCl(s) (~0.4g NaCl per 1L clean 

groundwater). The fluid conductivity was adjusted to simulate a fluid conductivity near 

that of the contaminated groundwater slug to more directly compare the effect of the 

contaminated versus uncontaminated injection response. Due to equipment malfunction, 

the uncontaminated slug was not injected immediately after being pumped out of the 

uncontaminated borehole. The uncontaminated slug was allowed to sit out overnight 

(under ambient conditions), and after the equipment was fixed, the uncontaminated slug 

was injected into MP7 ~24 hours after withdrawal from BH2. 
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Table 4.1.  Geochemical data collected from the uncontaminated borehole (BH2) and 

contaminated borehole (TP11) locations. Data compiled from unpublished data courtesy 

of Queen’s University Belfast, and Doherty et al. [2006] which is denoted with an 

asterisk symbol. 

 

 

 

 

4.5. RESULTS 

The average diurnal SP values, measured using one roving surface electrode 

positioned at the reference electrode, varied by ~4 mV over the duration of the field 

study, and all borehole SP data presented here have been corrected for diurnal SP 

variations. 

4.5.1. Experiment #1.  Initial borehole self-potential (BHSP) data collected prior 

to the injection experiment ranged from 43-109 mV and are shown in Table 4.2. During 

the injection of the contaminant slug at MP1 the BHSP values decreased at the injection 

site by ~9mV (Figure 4.3). The SP and water quality data collected for Experiment #1 are 

presented in Figure 4.4 as kriged contour plots showing the percent change relative to 

two hours before the contaminant injection. One hour after injection the BHSP values 

(Figure 4.4a) showed a decrease at the injection borehole MP1 (~11%; 9 mV), and 

adjacent boreholes MP3 (~3%; 3 mV) and W (~2%; 2 mV), while all other boreholes 

Component Borehole

BH2 TP11

Eh (mV) 162 -106

Fluid Conductivity (uS/cm) 709 3710

pH 7.27 7.39

DO 2.77 -0.06

TOC (ppm) 6 57

Ammoniacal Nitrogen (as NH4-N) 1.13 342.3

Nitrate (mg/L) 6.61 -

Sulfate (mg/L) 82.38 * 669

Sodium (mg/L) 62 * 33

Magnesium (mg/L) 11 * 22

Calcium (mg/L) 36 * 112

Chloride (mg/L) 41 * 39

Iron (mg/L) <0.05 * 0.95

BH2 samples collected 9/19/2000

TP11 samples collected 10/4/2000

*data compiled from Doherty et al. (2003)
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remained within +/- 1 mV of pre-injection SP values. BHSP values recorded 20 hours 

post-injection (Figure 4.4b) show that the injection borehole MP1 rebounded to pre-

injection values, while all other boreholes increased by 2-6% compared to pre-injection 

values. The BHSP values continued to increase (up to ~12%) surrounding the injection 

borehole MP1 through 44 hours post-injection (Figure 4.4c).  

 

 

 

Table 4.2.  Initial borehole SP, fluid conductivity, and Eh data collected from the PRB 

boreholes ~2hr prior to Experiment #1. 

 

 

 

 

Initial water quality data collected from the PRB boreholes and contaminant slug 

prior to injection are shown in Table 4.2 and Table 4.3, respectively. Fluid conductivity 

values recorded ~2 hrs prior to the injection experiment ranged from ~1063-1311 µS/cm 

over the PRB. Fluid conductivity values recorded ~1 hour after injection increased at the 

injection borehole MP1 and adjacent borehole MP3 (Figure 4.4d) by ~53% and 26%, 

respectively, while all other boreholes varied by <15% (+/- 100 µS/cm). Fluid 

Borehole SP Fluid Conductivity Eh

(mV) (µS/cm) (mV)

I 46 1276 -119.5

W 43 1276 -82.9

MP1 85 1311 -28.9

MP2 92 1176 -108.6

MP3 72 1063 73.4

MP4 72 1070 24

MP5 71 - -

MP6 90 1132 46.7

MP7 96 1278 77.5

MP8 109 1127 66.5

MP9 66 1083 90.9

MP10 78 1118 74.5

MP11 84 1145 78.1

MP12 80 1120 73.5
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conductivity values remained elevated at the injection borehole MP1 20 hours after the 

injection (Figure 4.4e) and to a lesser extent 44 hours post-injection (Figure 4.4f). Eh data 

collected from the PRB boreholes ~2hrs prior to the injection experiment ranged from ~ -

120mV to 91mV over the PRB (Table 4.2).  Eh values recorded ~1 hour after injection 

increased by ~180% (~50 mV) at the injection borehole MP1 (Figure 4.4g), and ~105% 

at MP4, while decreased Eh values were observed at the interceptor (171%), weir (-

172%), and MP3 (-109%). The trend of the Eh values remained relatively similar after 

~20 hours (Figure 4.4h). The Eh values recorded ~44 hours post-injection show increased 

Eh values (~50-300%) at MP2, MP4, and MP6, while decreased Eh values are observed 

at all other boreholes (Figure 4.4i). 

 

 

 

 
 

Figure 4.3.  Plot showing the borehole SP data collected at the injection borehole (MP1) 

during the Experiment #1 contaminant injection. Vertical lines represent injection times. 
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Table 4.3.  Initial fluid conductivity and Eh measured from the contaminant slug (TP11) 

and uncontaminated slug (BH2) prior to injection for Experiment #1 and #2. 

 

 

Experiment #1 Experiment #2

Borehole Fluid Conductivity Eh Fluid Conductivity Eh

(µS/cm) (mV) (µS/cm) (mV)

TP 11 1919 -109.9 2297 -59.8

BH2 - - 2559 -16.1
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Figure 4.4.  Kriged contour plots showing the percent change in borehole SP (a-c), fluid 

conductivity (d-f), and Eh (g-i) at 1 hour, 20 hours, and 44 hours after the Experiment #1 

contaminant injection, relative to two hours before injection. Coordinates (0, 0) represent 

approximate center of PRB survey area. 
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4.5.2. Experiment #2.  Initial BHSP data collected prior to the Experiment #2 

injections ranged from ~52-114 mV and are shown in Table 4.4. During the Experiment 

#2 injections, the BHSP values showed an overall increase of ~1mV at the 

uncontaminated injection borehole MP7 (Figure 4.5a), and a decrease of ~9mV at the 

contaminant injection borehole MP1 (Figure 4.5b). The BHSP and water quality data 

collected during Experiment #2 are presented in Figure 4.6 as kriged contour plots 

showing the percent change relative to 1.5 hours prior to the clean groundwater injection 

(or ~4 hrs prior to contaminant injection). BHSP values recorded ~0.5 and ~3 hours post-

injection (Figure 4.6a) for the NaCl and contaminant injections, respectively, showed an 

increase of ~3% (3 mV) at MP7, and a decrease of ~11% (9 mV) at MP1. The BHSP 

values recorded through ~20-44 hours post-injection (Figure 4.6b&c) continued to show 

increased BHSP values at the uncontaminated injection borehole (MP7). The decreased 

BHSP values also persisted through ~20-44 hours at the contaminant injection borehole 

MP1, though to a lesser extent (~3%). 

 

 

 

Table 4.4.  Initial borehole SP, fluid conductivity, and Eh data collected from the PRB 

boreholes ~1.5hr prior to Experiment #2. 

 

Borehole SP Fluid Conductivity Eh

(mV) (µS/cm) (mV)

I 51 1419 -134.4

W 49 1392 -79

MP1 89 1618 -107.1

MP2 95 1409 -136.2

MP3 73 1379 95.6

MP4 79 1285 87.5

MP5 77 - -

MP6 97 1451 75.7

MP7 100 1544 77.4

MP8 114 1479 67.2

MP9 68 1591 62.7

MP10 82 1395 78.5

MP11 95 1607 102.7

MP12 85 1520 14
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Figure 4.5.  Plots showing the borehole SP data collected during the Experiment #2 (a) 

uncontaminated injection at borehole MP7, and (b) contaminant injection at borehole 

MP1. Vertical lines represent injection times. 
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Figure 4.6.  Kriged contour plots showing the percent change in borehole SP (a-c), fluid 

conductivity (d-f), and Eh (h-i) after the Experiment #2 uncontaminated (3, 20, and 47 

hours) and contaminant (0.5, 17, and 44 hours) slug injections. Coordinates (0, 0) 

represent approximate center of PRB survey area. 
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Initial water quality data collected during the uncontaminated/contaminant slugs 

and PRB boreholes prior to injection are shown in Table 4.3 and Table 4.4, respectively. 

Fluid conductivity values recorded ~1.5 hrs prior to the injection experiment ranged from 

~1285-1618 µS/cm over the PRB. Fluid conductivity values recorded after both 

uncontaminated and contaminant injections increased at both injection boreholes (Figure 

4.6d) by ~25 – 30% (~300 µS/cm), and continued to increase at the contaminant injection 

borehole (MP1) through 17-20 hrs post-injection (Figure 4.6e) to ~45% (600 µS/cm). The 

fluid conductivity values recorded ~44-47 hours post-injection (Figure 4.6f) show a slight 

increase (<15%) near the entrance of the PRB, and a slight decrease (up to ~25%) near 

the exit of the PRB, relative to pre-injection values. Initial Eh measurements collected 

~1.5hrs prior to the injections ranged from ~ -136mV to 103 mV over the PRB. 

Measurement of Eh immediately after the Experiment #2 injections were not available, 

but through 17-20 hrs post-injection (Figure 4.6h) Eh values at the uncontaminated 

injection borehole had decreased by ~50% (30 mV) and increased at the contaminant 

injection borehole ~100% (130 mV). The increased Eh measured at MP1, and decreased 

values measured at MP7 persisted through ~44-47 hours post-injection (Figure 4.6i), 

though to a lesser extent. 

 

4.6. DISCUSSION 

The results of our field study show that the injected contaminant groundwater 

slugs clearly affected the temporal BHSP signals at the injection boreholes. The source of 

the SP signals, however, is not immediately evident upon inspection of the BHSP data 

sets. Prior to the injection experiments, the BHSP values display relatively small spatial 

variations (~50-63 mV) through the barrier, and no apparent gradient (from PRB entrance 

to exit) which would indicate an electrokinetic potential due to natural groundwater flow. 

We speculate that the absence of an electrokinetic potential from natural fluid flow may 

be due to the discontinuous nature of the PRB design, where water is required to flow or 

lap over a wall between the weir and the biological stage of the PRB, instead of a 

continuous flow regime.  
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The water quality measurements, however, show that the Eh values (Table 4.2) 

become increasingly positive spatially through the PRB from entrance (I) to the exit 

(MP12), which generally suggests a change in the redox environment associated with air 

sparging in the biological stage of the PRB.  

During the injection of the groundwater slugs, we observe consistent yet relatively 

small (<10 mV) decreases in SP (Figure 4.3 & 4.5b) associated with the contaminant 

injections, and a negligible (within our margin of error) 1 mV increase in SP (Figure 

4.5a) associated with the uncontaminated injection. Previous injection studies [e.g., Sill, 

1983] have reported decreased SP signals which were attributed to electrokinetic effects 

due to increased hydraulic head at the injection site, associated with the addition of the 

volume of the injected slug. In our current injection experiments, however, we do not 

observe decreased BHSP signals associated with the uncontaminated injection, although 

the method and volume of the injected slugs were similar for both the contaminant and 

uncontaminated injections. This would suggest that we are dealing with an effect other 

than a dominant electrokinetic potential during the injection of the groundwater slugs.  

The SP signals recorded from the contaminant injection experiments are much 

lower in magnitude (<10 mV) than that of the relatively strong SP response (> 50 mV) 

observed in previous field studies, attributed to redox gradients associated with 

subsurface microbial activity [e.g., Naudet et al., 2003; Arora et al., 2007]. While we do 

observe sharp changes in the redox values post-injection (Figure 4.4g-i & 4.6h-i) at MP1, 

we do not measure a corresponding strong (i.e, >50 mV) change in the measured BHSP 

signals (Figure 4.4a-c & 4.6a-c). Further, we observe a rough inverse relationship 

between variations in BHSP and Eh (Figure 4.7) for both the contaminant and 

uncontaminated injections. This relationship is inconsistent with previous studies [e.g., 

Naudet et al., 2004; Arora et al., 2007] which show a relatively good positive correlation 

between variations in SP and Eh. In addition, the rough inverse relationship we observe 

between BHSP and Eh was not expected as the injected contaminated water had a lower 

measured Eh value compared to that measured in MP1 prior to the injections. For 

example, during the Experiment #1 we injected a contaminant slug with an Eh of ~ -59.8 

mV into MP1 with an Eh of -28.9 mV. The increased Eh values measured at MP1 post-

injection may be explained by the possible aeration of the contaminant slug while it was 
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being injected down the borehole. As a result of these observations, we tentatively rule 

out electro-redox potential as being a primary contributor to the measured SP response in 

our experiments. Further, based on the relative magnitude of the SP response in 

comparison with previous studies [e.g., Arora et al., 2007], it is unlikely that the SP 

signals measured here can be attributed to geobattery effects.  

In the absence of a dominant electrokinetic or electro-redox/geobattery effect, we 

next examine the possible presence of electro-diffusion effects as being a contributor to 

the SP signals associated with the contaminant injections. Maineult et al. [2006] 

conducted a laboratory study of the effect of strong abiotic redox gradients on SP signals. 

The authors observed relatively small SP signals (< 10 mV) were produced along a 

reaction front between two parallel solutions (KMnO4 and FeCl2). The study by Maineult 

et al. [2006] suggests that an additional source mechanism is necessary to account for the 

large SP response (> 10mV) measured at biodegradation field sites, and that this SP 

source mechanism is absent in their abiotic study. We note the similarity in the 

magnitude of the SP signals in our current study to that of the Maineult et al. [2006] 

study. In addition, in our current study, we observe increased Eh values at the 

contaminant injection borehole (MP1) after the injection (e.g., Figure 4.4g & Figure 

4.6h), consistent with decreased BHSP signals (Figure 4.4a & Figure 4.6a). In contrast 

we do not observe increased Eh values at the uncontaminated injection borehole (MP7; 

Figure 4.6h), and a slight increase (~2 mV) in the BHSP signals (Figure 4.6b). We 

speculate that the difference in the Eh values, and difference in the chemical species 

driving the reactions between the uncontaminated and contaminated injections may be 

responsible for the difference in the BHSP response.  Thus, it is possible that we observe 

a dominant electrochemical (electro-diffusion) potential associated with the different 

injection types, similar to that of the abiotic study by Maineult et al. [2006]. 

In addition to the rough inverse relationship we observe between variations in Eh 

and BHSP signals, we also observe a rough inverse correlation between fluid 

conductivity variations and BHSP signals measured from the contaminant injections 

(Figure 4.8). We suggest that differences in the chemical composition between the 

injected slugs and the resident PRB water, and the concentration gradients and chemical 

reactions that developed as a result of the injections are responsible for the difference in 
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BHSP response between the contaminated and uncontaminated injections. While we 

attribute the dominant BHSP response of the contaminant injections to electro-diffusional 

effects, we cannot rule out the possible contribution of a microbial effect.  

 

 

 

 

 

Figure 4.7.  Plots showing the relationship between borehole SP and Eh for the (a) 

Experiment #1 and (b) Experiment #2 injections. Black filled circles represent the 

contaminant injections, and the gray filled triangles represent the uncontaminated 

injection. 
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Figure 4.8.  Plots showing the relationship between borehole SP and fluid conductivity 

for the (a) Experiment #1 and (b) Experiment #2 injections. Black filled circles represent 

the contaminant injections, and the gray filled triangles represent the uncontaminated 

injection. 
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SP signals that can be attributed to geobattery effects. While our study 

measured SP signals <10mV, previous studies of redox gradients 

associated with subsurface microbial activity measured SP variations well 

beyond 50 mV [e.g., Naudet et al., 2003; Arora et al., 2007].  

3. The injection of the uncontaminated groundwater (NaCl) slug did not 

result in the same measured SP response as the contaminant injections. We 

suggest that the difference in SP response is likely due to differences in 

the chemical composition of the different slugs and electro-diffusion 

effects with respect to the resident PRB water. 

Questions raised from this study include: (1) why did we not observe a strong 

microbial-induced response in the SP data? (2) Can measurement of electro-diffusional 

effects be used to detect and monitor microbial-induced changes within a biological 

PRB? Further studies are required to better understand the effect of microbial activity on 

SP signals associated with biological PRB’s and the potential utility for the SP method to 

detect/monitor changes that may be indicative of PRB performance. 

 

4.8. ACKNOWLEDGMENTS 

I would like to sincerely thank Lee Slater for the opportunity to conduct this work 

in Northern Ireland, and J. Graber, A. Ferguson, and R. Doherty for their assistance with 

field data collection. I also acknowledge B. Kulessa for helping to facilitate the field 

work in Northern Ireland, advisement during the field study, and assistance in helping 

with the preparation of previous versions of this manuscript. 

 

4.9. REFERENCES 

Arora, T., Linde, N., Revil, A., and Castermant, J. (2007), Non-intrusive characterization 

of the redox potential of landfill leachate plumes from self-potential data, J. 

Contam. Hydrol., doi:10.1016/j.conhyd.2007.01.018. 

Beck, F.P., Clark, P.J., and Puls, R.W. (2002), Direct push methods for locating and 

collecting cores of aquifer sediment and zero-valent iron from a permeable 

reactive barrier, Ground Water Monit. Remed., 22,165-168. 

 



 

 

110 

 

Bogoslovsky, V.A., and Ogilvy, A.A. (1970), Natural potential anomalies as a 

quantitative index of the rate of seepage from water reservoirs, Geophys. Propect., 

18, 261-268. 

Boleve, A., Revil, A., Janod, F., Mattiuzzo, J.L., and Jardani, A. (2007), Forward 

modeling and validation of a new formulation to compute self-potential signals 

associated with ground water flow, Hydrol. Earth Syst. Sci., 11, 1661–1671. 

Boshoff, G.A., and Bone, B.D. (eds.) (2005), Permeable reactive barriers, International 

Association of Hydrological Sciences, Publication 298, 163 p. 

CL:AIRE (Contaminated Land: Applications in Real Environments), (2005), Laboratory 

and field evaluation of a biological permeable reactive barrier for remediation of 

organic contaminants in soil and groundwater, CL:AIRE Case Study Bulletin, 

CSB 3, 4 p. 

Darnet, M., Marquis, G., and Sailhac, P. (2003), Estimating aquifer hydraulic properties 

from the inversion of surface streaming potential (SP) anomalies, Geophys. Res. 

Lett., 30, 1679-1682, doi:10.1029/2003GL 017631. 

Darnet, M., and Marquis, G. (2004), Modelling streaming potential (SP) signals induced 

by water movement in the vadose zone, J. Hydrol. (Amsterdam), 285, 114-124. 

Doherty, R. (2002), Modeling of a permeable reactive barrier (PRB) at a manufactured 

gas plant site in Portadown, Northern Ireland, U.K., Ph.D. Thesis, The Queen’s 

University of Belfast. 

Doherty, R., Phillips, D.H., McGeough, K.L., Walsh, K.P., and Kalin, R.M. [2006], 

Development of modified flyash as a permeable reactive barrier medium for a 

former manufactured gas plant site, Northern Ireland, Environ. Geol., 50, 37-46. 

Ernstson, K., and Scherer, H.U. (1986), Self-potential variations with time and their 

relation to hydrogeologic and meteorological parameters, Geophysics, 51, 1967–

1977. 

Ferguson, A.S., Doherty, R., Larkin, M.J., Kalin, R.M., Irvine, V., and Ofterdinger, U.S. 

(2003), Toxicity Assessment of a Former Manufactured Gas Plant, Bulletin of 

Environmental Contamination and Toxicology, 71 (1). 

 



 

 

111 

Fournier, C. (1989), Spontaneous potentials and resistivity surveys applied to 

hydrogeology in a volcanic area: case history of the Chaine des Puys (Puy-de-

Dome, France), Geophys. Prospecting, 37, 647–668, 1989. 

Kulessa, B., Hubbard, B., and Brown, G.H. (2003), Cross-coupled flow modeling of 

coincident streaming and electrochemical potentials and application to subglacial 

self-potential data, J. Geophys. Res., 108(B8), 2381, doi:10.1029/2001JB001167. 

Liang, L., Korte, N.E., Moline, G.R., and West, O.R. (2001), Long-term monitoring of 

permeable reactive barriers, ORNL/TM-2001/1. Oak Ridge National Laboratory, 

Oak Ridge, Tennessee. 

Liang, L., Sullivan, A.B., West, O.R., Kamolpornwijit, W., and Moline, G.R. (2003), 

Predicting the precipitation of mineral phases in permeable reactive barriers, 

Environ. Eng. Sci., 20(6), 635-653. 

Maineult, A., Bernabe, Y., and Ackerer, P. (2004), Electrical response of flow, diffusion, 

and advection in a laboratory sand box, Vadose Zone Journal, 3, 1180-1192. 

Maineult, A., Bernabé, Y., and Ackerer, P. (2006), Detection of advected, reacting redox 

fronts from self-potential measurements, J. Contam. Hydrol., 86, 32–52. 

McMahon, P.B., Dennehy, K.F., and Sandstrom, M.W. (1999), Hydraulic and 

geochemical performance of a permeable reactive barrier containing zero-valent 

iron, Denver Federal Center, Ground Water, 37(3), 396-404. 

Minsley, B.J. (2007), Modeling and inversion of self-potential data, Ph.D. Thesis, 

Massachusetts Institute of Technology, Cambridge, MA. 

Naudet, V., and Revil, A. (2005), A sandbox experiment to investigate bacteria-mediated 

redox processes on self-potential signals, Geophys. Res. Lett., 32, L11405, 

doi:10.1029/2005GL022735. 

Naudet, V., Revil, A., Bottero, J., and Begassat, P. (2003), Relationship between self-

potential (SP) signals and redox conditions in contaminated groundwater, 

Geophys. Res. Lett., 30(21), 2091, doi:10.1029/2003GL018096. 

Naudet, V., Revil, A., Rizzo, E., Bottero, J., and Begassat, P. (2004), Groundwater redox 

conditions and conductivity in a contaminant plume from geoelectrical 

investigations, Hydrol. Earth Sys. Sci., 8(1), 8-22. 

 



 

 

112 

Ntarlagiannis, D., Atekwana, E.A., Hill, E.A., and Gorby, Y. (2007), Microbial 

nanowires: Is the subsurface "hardwired''?, Geophys. Res. Lett., 34(17). 

Nyquist, J.E., and Corry, C.E. (2002), Self-potential: the ugly duckling of environmental 

geophysics, Leading Edge, 446-451. 

Petiau, G. (2000), Second generation of lead-lead chloride electrodes for geophysical 

applications, Pure Appl. Geophys., 157, 357-382. 

Phillips, D.H., Watson, D.B., Roh, Y., and Gu, B. (2003), Mineralogical characteristics 

and transformations during long-term operation of zerovalent iron reactive barrier, 

J. Environ, Qual., 32(6), 2033-2045. 

Puls, R., Paul, C., and Powell, R. (1999), The application of in situ permeable reactive 

(zero-valent iron) barrier technology for the remediation of chlorate contaminated 

groundwater: a field test, Appl. Geochem., 14, 989-1000. 

Revil, A., Naudet, V., Nouzaret, J., and Pessel, M. (2003), Principles of electrography 

applied to self-potential electrokinetic sources and hydrogeological applications, 

Water Resour. Res., 39(5), 1114, doi:10.1029/2001WR000916. 

Revil, A., and Leroy, P. (2004), Governing equations for ionic transport in porous shales, 

J. Geophys. Res., 109, B03208, doi:10.1029/2003JB002755. 

Revil, A., Cary, L., Fan, Q., Finizola, A., and Trolard, F. (2005), Self potential signals 

associated with preferential ground water flow pathways in a buried paleo-

channel, Geophys. Res. Lett., 32, L07401, doi:10.1029/2004GL022124. 

Sailhac, P., and Marquis, G. (2001), Analytic potentials for the forward and inverse 

modeling of SP anomalies caused by subsurface fluid flow, Geophys. Res. Lett., 

28, 1851-1854. 

Sato, M., and Mooney, H.M. (1960), The electrochemical mechanism of sulfide self-

potentials, Geophysics, 25(1), 226-249. 

Scherer, M.M., Richter, S., Valentine, R.L., Alvarez, P.J.J. (2000), Chemistry and 

microbiology of permeable reactive barriers for in situ groundwater clean up, Crit. 

Rev. Microbiol., 26, 221–264. 

Shirazi, F. (1997), Development of biological permeable reactive barriers for removal of 

Chlorophenols (2,4,6-Trichlorophenol) in contaminated groundwater, Ph.D. 

Thesis, Oklahoma State University, Stillwater, OK. 



 

 

113 

Sill, W.R. (1983), Self-potential modeling from primary flows, Geophysics, 48, 76-86. 

Slater, L., Ntarlagiannis, D., Yee, N., O’Brien, M, Zhang, C., and Williams, K.H. 

(2007b), Electrodic voltages in the presence of sulfide: implications for (1) 

monitoring natural microbial activity, and (2) SP electrode performance, 

Geophysics, 73(2), F65-F70. 

Song, S., Song, Y., and Kwon, B. (2005), Application of hydrogeological and 

geophysical methods to delineate leakage pathways in an earth fill dam, Explor. 

Geophys., 36, 92-96.  

Sturman, P.J., Stewart, P.S., Cunningham, A.B., Bouwer, E.J., and Wolfram, J.H. (1995), 

Engineering scale-up of in situ bioremediation processes: a review, J. Contam. 

Hydrol., 19, 171-203. 

Timm, F., and Moller, P. (2001), The relation between electric and redox potential: 

evidence from laboratory and field measurements, J. Geochem. Explor., 72(2), 

115-128. 

USEPA (2001), A Citizen's Guide to Permeable Reactive Barriers (PRBs), United States 

Environmental Protection Agency, USA. EPA/542/F-01-005. 

USEPA (2002), Field Applications of In Situ Remediation Technologies: Permeable 

Reactive Barriers, United States Environmental Protection Agency, USA.  

Zolla, V., Sethi, R., and Di Molfetta, A. (2007), Performance assessment and monitoring 

of a permeable reactive barrier for the remediation of a contaminated site, Am. J. 

Environ. Sci., 3, 158-165. 

 

 

 

 

 

 

 

 

 

 



 

 

114 

3. CONCLUSIONS 

3.1. SUMMARY 

Previous geophysical studies have greatly advanced the field of biogeophysics, 

however this subdiscipline of geophysics is still in its infancy, and hence provides for a 

wealth of opportunities to explore the effects of microbial-induced phenomena on 

geophysical signatures. Some of the outstanding questions that remain from previous 

investigations include: (1) What are the relative contributions of microbial metabolic 

byproducts on geophysical signatures? (2) What is the effect of microbial growth and 

biofilm formation on geophysical properties? (3) What geophysical techniques are best 

suited for assessing microbial-geologic interactions? To this end, the primary goal of this 

thesis was to test the hypothesis that microbial growth and activity in geologic media can 

result in measurable changes to the geophysical properties of the media. This was 

accomplished through a series of geophysical laboratory experiments and a field-scale 

study. A review of the objectives for this thesis, general observations and conclusions are 

summarized below: 

Contribution of metabolic byproducts (organic acids and biosurfactants) to 

electrical conductivity magnitude. The results of this experiment show that increases in 

electrolytic (fluid and real) conductivity are consistent with increases in concentrations of 

organic acids and biosurfactant. Increases in the electrolytic conductivity are also 

consistent with temporal increases major cation concentrations, which is indicative of 

mineral weathering, with a secondary affect on the interfacial conductivity. The results of 

this experiment suggest that electrolytic conductivity measurements may be useful as an 

indicator of microbial metabolism.  

Direct contribution and relative magnitude of the effect of microbial growth 

and biofilm formation on the low-frequency electrical properties of porous media. The 

results of this experiment show that interfacial conductivity generally paralleled the 

attached microbial cell concentrations in the biostimulated (bacteria + nutrients + diesel) 

columns. The results suggest that interfacial conductivity measurements may be used as 

proxy indicator for microbial growth and biofilm formation in porous media. 
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Spatiotemporal changes in acoustic wave propagation associated with microbial 

growth and biofilm formation in porous media. The results from the biostimulated 

column show an overall temporal decrease in acoustic wave velocity and exhibit 

variations in acoustic wave amplitude spatially over a 2D area of the column. While the 

exact mechanisms responsible for the differences in velocity and amplitude are yet 

unclear, the spatial variations appear to correlate with differences in the amount of 

attached biofilm and/or biofilm architecture. 

Natural electrical signatures associated with an in-situ biological permeable 

reactive barrier in response to the injection of contaminated groundwater.  The results 

of this experiment show that the measured self-potential (SP) signals are dominated by 

electrochemical or diffusion potentials induced by the injections, though the effect of 

microbial activity can not be completely ruled out. 

In summary, the findings presented in this thesis provide an additional 

fundamental understanding of the influence of microbial growth and activity on 

geophysical properties. Understanding the geophysical response of microbial 

biosignatures in controlled investigations, such as those presented here, is the first step 

toward recognizing these biosignatures in field geophysical data. Furthermore, the results 

of this study may allow for more accurate interpretation of geophysical data from near-

surface environments where microbial activity is enhanced or stimulated. 

 

3.2. RECOMMENDATIONS AND FUTURE WORK 

While this study has provided useful information regarding the influence of 

microbial growth and activity on geophysical signatures, several questions have been 

raised and remain unanswered. Further research is recommended to resolve these new 

questions and obtain a better understanding of not only the geophysical signatures 

associated with microorganisms, but also the mechanisms responsible for the observed 

biogeophysical response. As such, a list of questions that have been raised from this study 

are outlined below, along with additional ideas for future studies. 

1. What is the effect of oil mobilization by biosurfactants, and the 

physicochemical changes imparted during oil mobilization (i.e., changes 

in wettability) on the electrical properties of porous media?  
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2. What is the magnitude of the electrical response due to biogenic gas 

production? 

3. What is the contribution of microorganisms themselves on the elevated 

bulk conductivity response observed at hydrocarbon biodegradation field 

sites? 

4. What are the mechanisms responsible for the observed polarization 

response at the fluid-mineral interface due to microbial attachment and 

biofilm formation? 

5. Do different types of biofilms (i.e., different biofilm 

structures/architecture) have a variable effect on geophysical response? 

6. What are the mechanisms responsible for the variable acoustic wave 

propagation due to biofilm formation? 

As eluded to above, the research opportunities at this point in the progression of 

the field of biogeophysics are seemingly endless. Since geophysical processes are often 

coupled, like those of the complex/dynamic microbial-induced changes to the 

physicochemical properties of geologic media, more studies are needed to decouple these 

effects and quantify the magnitude of contributions. Knowledge of the biogeophysical 

signatures in the laboratory setting will allow for better interpretation of geophysical data 

due to microbial-induced changes in natural environments. Limitations exist with current 

geophysical studies, however, as most of the work to date has been largely experimental. 

Thus, there is also a need for additional numerical modeling studies to better describe 

bio-geophysical relationships. Looking forward, this work in addition to the previous 

biogeophysical studies, demonstrates the potential application of biogeophysical studies 

towards field-scale environmental problems, such as those associated with 

bioremediation, microbial enhanced oil recovery, and gas hydrate studies.  
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APPENDIX  

 

JOURNAL REPRINT PERMISSION FORMS 

 

Included with this dissertation is the written letter used to request permission from 

the American Geophysical Union (AGU) to use the article I had published in 2006 in the 

Geophysical Research Letters journal for this dissertation.  

 

 

 

 



 

 

118 

 

 



 

 

119 

 



 

 

120 

BIBLIOGRAPHY 

Abdel Aal, G., Atekwana, E., Radzikowski, S., Rossbach, S. (2009), Effect of bacterial 

adsorption on low frequency electrical properties of clean quartz sands and iron-

oxide coated sands, Geophys. Res. Lett., 36, L04403, 

doi:10.1029/2008GL036196. 

Abdel Aal, G.Z. (2008), Electrical properties of bacteria in sand columns: live vs. dead 

cells, AGU Chapman Conference on Biogeophysics, Portland, ME. 

Abdel Aal, G.Z., Atekwana, E.A., Slater, L.D., and Atekwana E.A. (2004), Effects of 

microbial processes on electrolytic and interfacial electrical properties of 

unconsolidated sediments, Geophys. Res. Lett., 31(12), L12505, 

doi:10.1029/2004GL020030. 

Abdel Aal, G.Z., Slater, L.D., Atekwana, E.A. (2006), Induced-polarization 

measurements on unconsolidated sediments from a site of active hydrocarbon 

biodegradation, Geophysics, 71, H13-H24. 

Ahimou, F., Semmens, M.J., Novak, P.J., and Haugstad, G. (2007), Biofilm cohesiveness 

measurement using a novel atomic force microscopy methodology, Appl. 

Environ. Microbiol., 73(9), 2897-2904.  

Allen, J.P., Atekwana, E.A., Atekwana, E.A., Duris, J.W., Werkema, D.D., and 

Rossbach, S. (2007), The microbial community structure in petroleum-

contaminated sediments corresponds to geophysical signatures, Appl. Environ. 

Microbiol., 73, 2860-2870. 

Archie, G.E. (1942), The electrical resistivity log as an aid in determining some reservoir 

characteristics, Transactions of the American Institute of Mining, Metallurgical 

and Petroleum Engineers, 146, 54-62. 

Arora, T., Linde, N., Revil, A., and Castermant, J. (2007), Non-intrusive characterization 

of the redox potential of landfill leachate plumes from self-potential data, J. 

Contam. Hydrol., doi:10.1016/j.conhyd.2007.01.018. 

 

 

 



 

 

121 

Atekwana, E.A., Atekwana, E.A., and Werkema, D.D. (2006), Biogeophysics: the effects 

of microbial processes on geophysical properties of the shallow subsurface. In 

Applied Hydrogeophysics, Vereecken, H., Binley, A., Cassiani, G., Revil, A., and 

Titov, K., (eds.), NATO Sci. Ser. IV, Springer: New York, pp. 161–193. 

Atekwana, E.A., Atekwana, E.A., Legall, F.D., and Krishnamurthy, R.V. (2004a), Field 

evidence for geophysical detection of microbial activity, Geophys. Res. Lett., 31, 

L23603, doi:10.1029/2004GL021576. 

Atekwana, E.A., Atekwana, E.A., Legall, F.D., and Krishnamurthy, R.V. (2005), 

Biodegradation and mineral weathering controls on bulk electrical conductivity in 

a shallow hydrocarbon contaminated aquifer, J. Contam. Hydrol., 80, 149-167. 

Atekwana, E.A., Atekwana, E.A., Rowe, R.S., Werkema, D.D., and Legall, F.D. (2004b), 

Total dissolved solids in groundwater and its relationship to bulk conductivity of 

soils contaminated with hydrocarbon, J. Appl. Geophys., 56, 281-294. 

Atekwana, E.A., Atekwana, E.A., Werkema, D.D., Allen, J.P., Smart, L.A., Duris, J.W., 

Cassidy, D.P., Sauck, W.A., and Rossbach, S. (2004c), Evidence for microbial 

enhanced electrical conductivity in hydrocarbon-contaminated sediments, 

Geophys. Res. Lett., 31, L23501. 

Atekwana, E.A., Atekwana, E.A., Werkema, D.D., Allen, J.P., Smart, L.A., Duris, J.W., 

Cassidy, D.P., Sauck, W.A., and Rossbach, S. (2004c), Evidence for microbial 

enhanced electrical conductivity in hydrocarbon-contaminated sediments, 

Geophys. Res. Lett., 31, L23501. 

Atekwana, E.A., Sauck, W.A., and Werkema Jr., D.D. (2000), Investigations of 

geoelectrical signatures at a hydrocarbon contaminated site, J. Appl. Geophys., 

44, 167-180. 

Atekwana, E.A., Werkema, D.D., Duris, J.W., Rossbach, S., Atekwana, E.A., Sauck, 

W.A., Cassidy, J.P., Means, J., and Legall, F.D. (2004d), In-situ apparent 

conductivity measurements and microbial population distribution at a 

hydrocarbon-contaminated site, Geophysics, 69, 56-63. 

 

 

 



 

 

122 

Bartha, R., and Atlas, R.M. (1987), Transport and transformations of petroleum: 

biological processes. In Boesch, D.F., and Rabalais, N.N. (eds.), Long-term 

environmental effects of offshore oil and gas development, Elsevier Applied 

Science, London, pp. 287-341. 

Baveye, P., Vandevivere, P., Hoyle, B.L., DeLeo, P.C., and Sanchez de Lozada, D. 

(1998), Environmental impact and mechanisms of the biological clogging of 

saturated soils and aquifer materials, Crit. Rev. Environ. Sci. Tech., 28(2), 123-

191. 

Beck, F.P., Clark, P.J., and Puls, R.W. (2002), Direct push methods for locating and 

collecting cores of aquifer sediment and zero-valent iron from a permeable 

reactive barrier, Ground Water Monit. Remed., 22,165-168. 

Bennett, P.C., Hiebert, F.K., Choi, W.J. (1996), Microbial colonization and weathering of 

silicates in a petroleum-contaminated groundwater, Chem. Geol., 132, 45-53.  

Bermejo, J.L., Sauck, W.A., and Atekwana, E.A. (1997), Geophysical discovery of a new 

LNAPL plume at the former Wurtsmith AFB, Ground Water Monit. Remed., 17, 

131-137. 

Blitz, J., and Simpson, G. (1996), Ultrasonic methods of non-destructive testing, 

Springer, 264 p. 

Bogoslovsky, V.A., and Ogilvy, A.A. (1970), Natural potential anomalies as a 

quantitative index of the rate of seepage from water reservoirs, Geophys. Propect., 

18, 261-268. 

Boleve, A., Revil, A., Janod, F., Mattiuzzo, J.L., and Jardani, A. (2007), Forward 

modeling and validation of a new formulation to compute self-potential signals 

associated with ground water flow, Hydrol. Earth Syst. Sci., 11, 1661–1671. 

Boshoff, G.A., and Bone, B.D. (eds.) (2005), Permeable reactive barriers, International 

Association of Hydrological Sciences, Publication 298, 163 p. 

Brovelli, A., Malaguerra, F., and Barry, D.A. (2009), Bioclogging in porous media: 

model development and sensitivity to initial conditions, Environ. Model. 

Software, 24, 611-626. 

Bryant, S.L., and Lockhart, T.P. (2002), Reservoir engineering analysis of microbial 

enhanced oil recovery, SPE Reservoir Eval. Eng., 5, 365-374 



 

 

123 

Bunthof, C.J., van Schalkwijk, S., Meijer, W., Abee, T., and Hugenholtz, J. (2001), 

Fluorescent method for monitoring cheese starter permeabilization and lysis, 

Appl. Environ. Microbiol., 67, 4264-4271. 

Cassidy, D.P., Hudak, A.J., Werkema, D.D., Atekwana, E.A., Rossbach, S., Duris, J.W., 

Atekwana, E.A., and Sauck, W.A. (2002), In-situ rhamnolipid production at an 

abandoned petroleum refinery by Pseudomonas aeruginosa, J. Soil Sed. Contam., 

11, 769-787.  

Cassidy, D.P., Werkema, D.D., Sauck, W.A., Atekwana, E.A., Rossbach, S., and Duris, J. 

(2001), The effects of LNAPL biodegradation products on electrical conductivity 

measurements, J. Env. Eng. Geophysics, 6, 47-52. 

Chapelle, F.H., and Bradley, P.M. (1997), Alteration of aquifer geochemistry by 

microorganisms. In Hurst, C.J. (ed.), Manual of Environmental Microbiology, 

ASM Press, Washington, DC, pp. 558-564. 

CL:AIRE (Contaminated Land: Applications in Real Environments), (2005), Laboratory 

and field evaluation of a biological permeable reactive barrier for remediation of 

organic contaminants in soil and groundwater, CL:AIRE Case Study Bulletin, 

CSB 3, 4 p. 

Clark, V.A., Tittman, B.R., and Spencer, T.W. (1980), Effect of volatiles on attenuation 

(Q-1) and velocity in sedimentary rocks, J. Geophys. Res., 85, 5190-5198. 

Cozzarelli, I.M., Baedecker, M.J., Eganhouse, R.P., and Goerlitz, D.F. (1994), The 

geochemical evolution of low-molecular-weight organic acids derived from the 

degradation of petroleum contaminants in groundwater, Geochim. Cosmo. Acta, 

58, 863-877. 

Cozzarelli, I.M., Herman, J.S., and Baedecker, M.J. (1995), Fate of microbial metabolites 

of hydrocarbons in a coastal plain aquifer: the role of electron acceptors, Environ. 

Sci. Tech., 29, 458-469. 

Darnet, M., and Marquis, G. (2004), Modelling streaming potential (SP) signals induced 

by water movement in the vadose zone, J. Hydrol. (Amsterdam), 285, 114-124. 

Darnet, M., Marquis, G., and Sailhac, P. (2003), Estimating aquifer hydraulic properties 

from the inversion of surface streaming potential (SP) anomalies, Geophys. Res. 

Lett., 30, 1679-1682, doi:10.1029/2003GL 017631. 



 

 

124 

Davey, M.E., Caiazza, N.C., and O’Toole, G.A. (2003), Rhamnolipid surfactant 

production affects biofilm architecture in Pseudomonas aeruginosa PAO1, J. 

Bacteriol., 185(3), 1027-1036, doi:10.1128/JB.185.3.1027–1036.2003. 

Davis, C.A., Atekwana, E.A., Atekwana, E.A., Slater, L.D., Rossbach, S., and Mormile, 

M.R. (2006), Microbial growth and biofilm formation in geologic media is 

detected with complex conductivity measurements, Geophys. Res. Lett., 33, 

L18403, doi:10.1029/2006GL027312. 

DeJong, J.T., Fritzges, M.B., and Nusslein, K. (2006), Microbially induced cementation 

to control sand response to undrained shear, J. Geotech. Geoenviron. Eng., 

132(11), 1381-1392. 

DeJong, J.T., Mortensen, B.M., Martinez, B.C., and Nelson, D.C. (2009), Bio-mediated 

soil improvement, Ecol. Eng., In Press, doi:10.1016/j.ecoleng.2008.12.029.     

Desai, J.D., and Banat, I.M. (1997), Microbial production of surfactants and their 

commercial potential, Microbiol. Mol. Bio. Rev., 61(1), 47-64. 

Doherty, R. (2002), Modeling of a permeable reactive barrier (PRB) at a manufactured 

gas plant site in Portadown, Northern Ireland, U.K., Ph.D. Thesis, The Queen’s 

University of Belfast. 

Doherty, R., Phillips, D.H., McGeough, K.L., Walsh, K.P., and Kalin, R.M. [2006], 

Development of modified flyash as a permeable reactive barrier medium for a 

former manufactured gas plant site, Northern Ireland, Environ. Geol., 50, 37-46. 

Dupin, H.J., and McCarty, P.L. (2000), Impact of colony morphologies and disinfection 

on biological clogging in porous media, Environ. Sci. Technol., 34(8), 1513-1520, 

doi:10.1021/es990452f. 

Ecker, C., Dvorkin, J., and Nur, A. (1998), Sediments with gas hydrates: internal 

structure from seismic AVO, Geophysics, 63, 1659-1669. 

Ernstson, K., and Scherer, H.U. (1986), Self-potential variations with time and their 

relation to hydrogeologic and meteorological parameters, Geophysics, 51, 1967–

1977. 

Ferguson, A.S., Doherty, R., Larkin, M.J., Kalin, R.M., Irvine, V., and Ofterdinger, U.S. 

(2003), Toxicity Assessment of a Former Manufactured Gas Plant, Bulletin of 

Environmental Contamination and Toxicology, 71 (1). 



 

 

125 

Fournier, C. (1989), Spontaneous potentials and resistivity surveys applied to 

hydrogeology in a volcanic area: case history of the Chaine des Puys (Puy-de-

Dome, France), Geophys. Prospecting, 37, 647–668, 1989. 

Friedman, L., and Kolter, R. (2004), Genes involved in matrix formation in Pseudomonas 

aeruginosa PA14 biofilms, Molec. Microbio., 51(3), 675–690 doi:10.1046/j.1365-

2958.2003.03877.x. 

Gorby, Y.A., Yanina, S., McLean, J.S., Rosso, K.M., Moyles, D., Dohnalkova, A., 

Beveridge, T.J., Chang, I., Kim, B.H., Kim, K.S., Culley, D.E., Reed, S.B.,  

Romine, M.F., Saffarini, D.A., Hill, E.A., Shi, L, Elias, D.A., Kennedy, D.W., 

Pinchuk, G., Watanabe, K., Ishii, S., Logan, B., Nealson, K.H., and Fredrickson, 

J.K. (2006), Electrically conductive bacterial nanowires produced by Shewanella 

oneidensis strain MR-1 and other microorganisms, Proc. Natl. Acad. Sci. USA, 

103(30), 11358-11363. 

Hiebert, F.K., and Bennett, P.C. (1992), Microbial control of silicate weathering in 

organic-rich groundwater, Science, 258, 278-281. 

Huang, W.H., and Keller, W.D. (1970), Dissolution of rock-forming silicate minerals in 

organic acids: simulated first-stage weathering of fresh mineral surfaces, Amer. 

Mineral., 55, 2076-2094. 

Kearey, P., Brooks, M., and Hill, I. (2002), An introduction to geophysical exploration, 

Blackwell Publishing, 262 p. 

Kildsgaard, J., and Engesgaard, P. (2002), Numerical analysis of biological clogging in 

two-dimensional sand box experiments, J. Contam. Hydrol., 50, 261-285. 

Klapper, I., Rupp, C.J., Cargo, R., Purvedorj, B., and Stoodley, P. (2002), Viscoelastic 

fluid description of bacterial biofilm material properties, Biotech. Bioeng., 80(3), 

289-296.  

Klausen, M., Heydorn, A., Ragas, P., Lambertsen, L., Aaes-Jørgensen, A., Molin, S., and 

Tolker-Nielsen, T. (2003), Biofilm formation by Pseudomonas aeruginosa wild 

type, flagella and type IV pili mutants, Molecular Microbiol., 48(6), 1511–1524. 

Knight, R., and Nolen-Hoeksema, R. (1990), A laboratory study of the dependence of 

elastic wave velocities on pore scale fluid distribution, Geophys. Res. Lett., 17, 

1529-1532. 



 

 

126 

Kolev, V. L., Danov, K.D.,  Kralchevsky, P.A., Broze, G., and Mehreteab, A., (2002), 

Comparison of the van der waals and frumkin adsorption isotherms for sodium 

dodecyl sulfate at various salt concentrations, Langmuir, 18(23), 9106-9109, 

doi:10.1021/la0259858. 

Kulessa, B., Hubbard, B., and Brown, G.H. (2003), Cross-coupled flow modeling of 

coincident streaming and electrochemical potentials and application to subglacial 

self-potential data, J. Geophys. Res., 108(B8), 2381, doi:10.1029/2001JB001167. 

Lehman, M.R., Colwell, F.S., and Bala, G.A. (2001), Attached and unattached microbial 

communities in a simulated basalt aquifer under fracture- and porous-flow 

conditions, Appl. Environ. Microbiol., 67(6), 2799-2809. 

Lesmes, D.P., and Frye, K.M. (2001), Influence of pore fluid chemistry on the complex 

conductivity and induced polarization responses of Berea sandstone, J. Geophys. 

Res., 106, 4079-4090. 

Lesmes, D.P., and Morgan, F.D. (2001), Dielectric spectroscopy of sedimentary rocks, J. 

Geophys. Res., 106, 13329-13346. 

Li, X., Zhong, L.R., and Pyrak-Nolte, L.J. (2001), Physics of partially saturated porous 

media: residual saturation and seismic-wave propagation, Ann. Rev. Earth Planet. 

Sci., 29, 419-460. 

Liang, L., Korte, N.E., Moline, G.R., and West, O.R. (2001), Long-term monitoring of 

permeable reactive barriers, ORNL/TM-2001/1. Oak Ridge National Laboratory, 

Oak Ridge, Tennessee. 

Liang, L., Sullivan, A.B., West, O.R., Kamolpornwijit, W., and Moline, G.R. (2003), 

Predicting the precipitation of mineral phases in permeable reactive barriers, 

Environ. Eng. Sci., 20(6), 635-653. 

Lundegard, P.D., and Land, L.S. (1986), Carbon dioxide and organic acids: their role in 

porosity enhancement and cementation, Paleogene of the Texas Gulf Coast. In 

Gautier, D.L. (ed.), Roles of Organic Matter in Sediment Diagenesis, SEPM 

Special Pub., 38, pp. 129-146. 

Maier, R.M., Pepper, I.L., and Gerba, C.P. (2000), Environmental Microbiology, 

Academic Press, San Diego, CA, 585 p. 

 



 

 

127 

Maineult, A., Bernabe, Y., and Ackerer, P. (2004), Electrical response of flow, diffusion, 

and advection in a laboratory sand box, Vadose Zone Journal, 3, 1180-1192. 

Maineult, A., Bernabé, Y., and Ackerer, P. (2006), Detection of advected, reacting redox 

fronts from self-potential measurements, J. Contam. Hydrol., 86, 32–52. 

Mai-Prochnow, A., Evans, F., Dalisay-Saludes, D., Stelzer, S., Egan, S., James, S., 

Webb, J.S., and Kjelleberg, S. (2004), Biofilm development and cell death in the 

marine bacterium Pseudoaltermonas tunicate, Appl. Environ. Microbiol., 70, 

3232-3238. 

Mavko, G., and Jizba, D. (1991), Estimating grain-scale fluid effects on velocity 

dispersion in rocks, Geophysics, 56, 1940–49. 

Mázac, O., Benes, L., Landa, I., and Maskova, A. (1990), Determination of the extent of 

oil contamination in groundwater by geoelectrical methods. In Ward, S.H. (ed.), 

Geotechnical. Env. Geo., 2, pp. 107-112. 

McInerney, M.J., Nagle, D.P., and Knapp, R.M. (2005), Microbially enhanced oil 

recovery: past, present, and future. In Ollivier, B., and Magot, M. (eds.), 

Petroleum Microbiology, ASM Press, 365 p. 

McMahon, P.B., and Chapelle, F.H. (1991), Microbial production of organic acids in 

aquitard sediments and its role in aquifer geochemistry, Nature, 349, 233-235. 

McMahon, P.B., Dennehy, K.F., and Sandstrom, M.W. (1999), Hydraulic and 

geochemical performance of a permeable reactive barrier containing zero-valent 

iron, Denver Federal Center, Ground Water, 37(3), 396-404. 

McMahon, P.B., Vroblesky, D.A., Bradley, P.M., Chapelle, F.H., and Gullet, C.D. 

(1995), Evidence for enhanced mineral dissolution in organic acid-rich shallow 

groundwater, Ground Water, 33, 207-216. 

Meshri, I.D. (1986), On the reactivity of carbonic and organic acids and generation of 

secondary porosity, SEPM Special Pub., 38, pp. 123-128. 

Minsley, B.J. (2007), Modeling and inversion of self-potential data, Ph.D. Thesis, 

Massachusetts Institute of Technology, Cambridge, MA. 

Murphy III, W.F., Winkler, K.W., and Kleinberg, R.L. (1984), Frame modulus reduction 

in sedimentary rocks: the effect of adsorption on grain contacts, Geophys. Res. 

Lett., 1(9), 805-808. 



 

 

128 

Naudet, V., and Revil, A. (2005), A sandbox experiment to investigate bacteria mediated 

redox processes on self-potential signals, Geophys. Res. Lett., 32, L11405, 

doi:10.1029/2005GL022735. 

Naudet, V., Revil, A., Bottero, J., and Begassat, P. (2003), Relationship between self-

potential (SP) signals and redox conditions in contaminated groundwater, 

Geophys. Res. Lett., 30(21), 2091, doi:10.1029/2003GL018096. 

Naudet, V., Revil, A., Rizzo, E., Bottero, J., and Begassat, P. (2004), Groundwater redox 

conditions and conductivity in a contaminant plume from geoelectrical 

investigations, Hydrol. Earth Sys. Sci., 8(1), 8-22. 

Ntarlagiannis, D., and Ferguson, A. (2009), SIP response of artificial biofilms, 

Geophysics, 74(1), A1-A5. 

Ntarlagiannis, D., Atekwana, E.A., Hill, E.A., and Gorby, Y. (2007), Microbial 

nanowires: Is the subsurface "hardwired''?, Geophys. Res. Lett., 34(17). 

Ntarlagiannis, D., Williams, K.H., Slater, L., and Hubbard, S. (2005a), The low 

frequency electrical response to microbially induced sulfide precipitation, J. 

Geophys. Res., 110, G02009, doi:10.1029/2005JG000024.  

Ntarlagiannis, D., Yee, N., and Slater, L. (2005b), On the low frequency induced 

polarization of bacterial cells in sands, Geophys. Res. Lett., 32, L24402, 

doi:10.1029/2005GL024751. 

Nyquist, J.E., and Corry, C.E. (2002), Self-potential: the ugly duckling of environmental 

geophysics, Leading Edge, 446-451. 

Olhoeft, G.R. (1985), Low-frequency electrical properties, Geophysics, 50(12), 2492-

2503. 

Ollivier, B., and Magot, M., (eds.) (2005), Petroleum Microbiology, ASM Press, 365 p. 

Palmer, I.D., and Traviolia, M.L. (1980), Attenuation by squirt flow in undersaturated gas 

sands, Geophysics, 45, 1780–1792. 

Pamp, S.J., and Tolker-Nielsen, T. (2007), Multiple roles of biosurfactants in structural 

biofilm development by Pseudomonas aeruginosa, J. Bacteriol., 189(6), 2531–

2539, doi:10.1128/JB.01515-06. 

 

 



 

 

129 

Personna Y.R., Ntarlagiannis, D., Slater, L., Yee, N., O'Brien, M., and Hubbard, S. 

(2008), Spectral induced polarization and electrodic potential monitoring of 

microbially mediated iron sulfide transformations, J. Geophys. Res., 113, 

G02020, doi:10.1029/2007JG000614. 

Petiau, G. (2000), Second generation of lead-lead chloride electrodes for geophysical 

applications, Pure Appl. Geophys., 157, 357-382. 

Phillips, D.H., Watson, D.B., Roh, Y., and Gu, B. (2003), Mineralogical characteristics 

and transformations during long-term operation of zerovalent iron reactive barrier, 

J. Environ, Qual., 32(6), 2033-2045. 

Prodan, C., F. Mayo, J. R. Claycomb, J. H. Miller, and Benedik, M.J. (2004), Low-

frequency, low-field dielectric spectroscopy of living cell suspensions, J. Appl. 

Phys., 95, 3754-3756. 

Puls, R., Paul, C., and Powell, R. (1999), The application of in situ permeable reactive 

(zero-valent iron) barrier technology for the remediation of chlorate contaminated 

groundwater: a field test, Appl. Geochem., 14, 989-1000. 

Pyrak-Nolte, L.J., Mullenbach, B.L., Li, X., Nolte, D.D., and Grader, A.S. (1999), 

Detecting sub-wavelength layers and interfaces in synthetic sediments using 

seismic wave transmission, Geophys. Res. Lett., 26, 127-130. 

Reguera, G., McCarthy, K.D., Mehta, T., Nicoll, J.S., Tuominen, M.T., and Lovely, D.R. 

(2005), Extracellular electron transfer via microbial nanowires, Nat. Lett., 

435(23), 1098-1101. 

Revil, A., and Glover, P.W.J. (1998), Nature of surface electrical conductivity in natural 

sands, sandstones, and clays, Geophys. Res. Lett., 25, 691-694. 

Revil, A., and Leroy, P. (2004), Governing equations for ionic transport in porous shales, 

J. Geophys. Res., 109, B03208, doi:10.1029/2003JB002755. 

Revil, A., Cary, L., Fan, Q., Finizola, A., and Trolard, F. (2005), Self potential signals 

associated with preferential ground water flow pathways in a buried paleo-

channel, Geophys. Res. Lett., 32, L07401, doi:10.1029/2004GL022124. 

Revil, A., Naudet, V., Nouzaret, J., and Pessel, M. (2003), Principles of electrography 

applied to self-potential electrokinetic sources and hydrogeological applications, 

Water Resour. Res., 39(5), 1114, doi:10.1029/2001WR000916. 



 

 

130 

Reynolds, J.M. (1997), An introduction to applied and environmental geophysics, John 

Wiley and Sons, 806p. 

Rinck-Pfeiffer, S.M., Ragusa, S.R., Sztajnbok, P., and Vandevelde, T. (2000), 

Interrelationships between biological, chemical and physical processes as an 

analog to clogging in Aquifer Storage and Recovery (ASR) wells, Wat. Res., 

34(7), 2110-2118. 

Ron, E.Z., and Rosenberg, E. (2001), Natural roles of biosurfactants, Environ. Microbiol., 

3(4), 229, doi:10.1046/j.1462-2920.2001.00190.x. 

Rosen, MJ. (1989), Surfactants and Interfacial Phenomena. 2nd Ed. New York: Wiley-

Interscience, 393–419.  

Sailhac, P., and Marquis, G. (2001), Analytic potentials for the forward and inverse 

modeling of SP anomalies caused by subsurface fluid flow, Geophys. Res. Lett., 

28, 1851-1854. 

Sato, M., and Mooney, H.M. (1960), The electrochemical mechanism of sulfide self-

potentials, Geophysics, 25(1), 226-249. 

Sauck, W.A., Atekwana, E.A., and Nash, M.S. (1998), High conductivities associated 

with an LNAPL plume imaged by integrated geophysical techniques, J. Env. Eng. 

Geophys., 2, 203-212. 

Scherer, M.M., Richter, S., Valentine, R.L., Alvarez, P.J.J. (2000), Chemistry and 

microbiology of permeable reactive barriers for in situ groundwater clean up, Crit. 

Rev. Microbiol., 26, 221–264. 

Shirazi, F. (1997), Development of biological permeable reactive barriers for removal of 

Chlorophenols (2,4,6-Trichlorophenol) in contaminated groundwater, Ph.D. 

Thesis, Oklahoma State University, Stillwater, OK. 

Sill, W.R. (1983), Self-potential modeling from primary flows, Geophysics, 48, 76-86. 

Silverman, M.P., and Munoz, E.F. (1974), Microbial metabolism and dynamic changes in 

the electrical conductivity of soil solutions: a method for detecting extraterrestrial 

life, Appl. Microbiol., 28(6), 960-967. 

Slater, L., (2006), Near surface electrical characterization of hydraulic conductivity: from 

petrophysical properties to aquifer geometries - a review, Surv. Geophys., 28, 

169-197. 



 

 

131 

Slater, L., and Lesmes, D.P. (2002), IP interpretation in environmental investigations, 

Geophysics, 67, 77-88. 

Slater, L., Ntarlagiannis, D., Personna, Y.R., and Hubbard, S. (2007a), Pore-scale spectral 

induced polarization signatures associated with FeS biomineral transformations, 

Geophys. Res. Lett., 34, L21404, doi: 10.1029/2007GL031840. 

Slater, L., Ntarlagiannis, Yee, N., O’Brien, M., Zhang, C., and Williams, K.H. (2007b), 

Electrodic voltages in the presence of dissolved sulfide: Implications for 

monitoring natural microbial activity, Geophysics, 73(2), 65-70. 

Song, S., Song, Y., and Kwon, B. (2005), Application of hydrogeological and 

geophysical methods to delineate leakage pathways in an earth fill dam, Explor. 

Geophys., 36, 92-96.  

Stoodley, P., Lewandowksi, Z., Boyle, J.D., and Lappin-Scott, H.M. (1999), Structural 

deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: 

an in situ investigation of biofilm rheology, Biotech. Bioeng., 65(1), 83-92. 

Sturman, P.J., Stewart, P.S., Cunningham, A.B., Bouwer, E.J., and Wolfram, J.H. (1995), 

Engineering scale-up of in situ bioremediation processes: a review, J. Contam. 

Hydrol., 19, 171-203. 

Taylor, S.W., and Jaffé, P.R. (1990), Substrate and biomass transport in a porous 

medium, Water Resour. Res., 26(9), 2181–2194. 

Telford, W.M., Geldart, I.P., and Sheriff, R.E. (1991), Applied geophysics, Cambridge 

University Press, 770 p. 

Thullner, M., Schroth, M.H., Zeyer, J., and Kinzelbach, W. (2004), Modeling of a 

microbial growth experiment with bioclogging in a two-dimensional saturated 

porous media flow field, J. Contam. Hydrol., 70, 37-62. 

Timm, F., and Moller, P. (2001), The relation between electric and redox potential: 

evidence from laboratory and field measurements, J. Geochem. Explor., 72(2), 

115-128. 

Tower, O.F. (1905), The conductivity of liquids: methods, results, chemical applications, 

and theoretical considerations, Chemical Publishing Co., Easton, PA., 182. 

USEPA (2001), A Citizen's Guide to Permeable Reactive Barriers (PRBs), United States 

Environmental Protection Agency, USA. EPA/542/F-01-005. 



 

 

132 

USEPA (2002), Field Applications of In Situ Remediation Technologies: Permeable 

Reactive Barriers, United States Environmental Protection Agency, USA.  

Vandevivere, P., and Baveye, P. (1992), Effect of bacterial extracellular polymers on the 

saturated hydraulic conductivity of sand columns, Appl. Environ. Microbiol., 

58(5), 1690-1698.  

Vanhala, H., and Soininen, H. (1995), Laboratory technique for measurement of spectral 

induced polarization response of soil samples,  Geophys. Prospect., 43, 655-676. 

Vinegar, H.J., and Waxman, M.H. (1984), Induced polarization of shaly sands, 

Geophysics, 49(8), 1267-1287. 

Volkering, F., Breure, A.M., and Rulkens, W.H. (1998), Microbiological aspects of 

surfactant use for biological soil remediation, Biodegradation, 8, 401-417. 

Watnick, P., and Kolter, R. (2000), Biofilm, city of microbes, J. Bacteriol., 182(10), 

2675-2679. 

Waxman, M.H., and Smits, L.J.M. (1968), Electrical conductivities in oil-bearing shaly 

sands, Soc. Petrol. Eng. Journal, 8, 107-122. 

Welch, S.A., and Ullman, W.J. (1993), The effect of organic acids on feldspar dissolution 

rates and stoichiometry, Geochim. Cosmo. Acta, 57, 2725-2736. 

Werkema, D.D., Atekwana, E.A., Enders, A., Sauck, W.A., and Cassidy, D.P. (2003), 

Investigating the geoelectrical response of hydrocarbon contamination undergoing 

biodegradation, Geophys. Res. Lett., 30, 1647, doi: 10.1029/2003GL017346. 

Williams, K.H. (2002), Monitoring microbe-induced physical property changes using 

high-frequency acoustic waveform data:  toward the development of a microbial 

megascope, M.S. Thesis, University of California, Berkeley, CA. 

Williams, K.H., Ntarlagiannis, D., Slater, L.D., Dohnalkova, A., Hubbard, S.S., and 

Banfield, J.F. (2005), Geophysical imaging of stimulated microbial 

biomineralization, Environ. Sci. Technol., 39(19), 7592-7600. 

Youssef, N., Simpson, D.R., Duncan, K.E., McInerney, M.J., Folmsbee, M., Fincher, T., 

and Knapp, R.M. (2007), In Situ Biosurfactant Production by Bacillus Strains 

Injected into a Limestone Petroleum Reservoir, Appl. Environ. Microbiol., 73(4), 

1239–1247, doi:10.1128/AEM.02264-06. 

 



 

 

133 

Zhang, Y., and Miller, R.M. (1995), Effect of rhamnolipid (biosurfactant) structure on 

solubilization and biodegradation of n-alkanes, Appl. Environ. Microbiol., 61, 

2247-2251. 

Zolla, V., Sethi, R., and Di Molfetta, A. (2007), Performance assessment and monitoring 

of a permeable reactive barrier for the remediation of a contaminated site, Am. J. 

Environ. Sci., 3, 158-165. 

 

 

 

 

 

 

 



 

 

134 

VITA 

Caroline Ann Davis was born August 8, 1978. In 1996, she graduated from Linn-

Mar High School located in Marion, IA. She then went on to acquire her A.A. degree 

(1998) in International Business from Kirkwood Community College, Cedar Rapids, IA. 

She earned her B.S. (2001) in Geology from Iowa State University, Ames, IA, and an 

M.S. (2003) in Geology from Fort Hays State University, located in Hays, KS. Her Ph.D. 

in Geophysics was awarded in August 2009 from the Missouri University of Science and 

Technology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

135 

 

 

 

 

 

 

 

 

 

 


	Investigating the impact of microbial interactions with geologic media on geophysical properties
	Recommended Citation

	CDavis_Thesis

