70 research outputs found

    Mechanisms governing the therapeutic effect of mesenchymal stromal cell-derived extracellular vesicles: A scoping review of preclinical evidence

    Get PDF
    Compelling evidence supports the therapeutic benefit of extracellular vesicles (EVs). EVs are nanostructures with a lipid bilayer membrane that are secreted by multiple cells, including mesenchymal stromal cells (MSCs), as means of cellular communication. MSC-EVs, resembling their MSC origin, carry protected immunomodulatory and pro-regenerative cargoes to targeted neighboring or distant cells and tissues. Though treatments focused on MSC-EVs have emerged as greatly versatile approaches to modulate multiple inflammatory-related conditions, crucial concerns, including the possibility of increasing therapeutic outcomes by pre-conditioning parental MSCs or engineering derived EVs and clarification of the most relevant mechanisms of action, remain. Here, we summarize the large amount of preclinical research surrounding the modulation of beneficial effects by MSC-EVs

    Epigenetic Biomarkers in Cardiovascular Diseases

    Get PDF
    Altres ajuts: Fundació La Marató de TV3 (201516-10, 201502-20)Cardiovascular diseases are the number one cause of death worldwide and greatly impact quality of life and medical costs. Enormous effort has been made in research to obtain new tools for efficient and quick diagnosis and predicting the prognosis of these diseases. Discoveries of epigenetic mechanisms have related several pathologies, including cardiovascular diseases, to epigenetic dysregulation. This has implications on disease progression and is the basis for new preventive strategies. Advances in methodology and big data analysis have identified novel mechanisms and targets involved in numerous diseases, allowing more individualized epigenetic maps for personalized diagnosis and treatment. This paves the way for what is called pharmacoepigenetics, which predicts the drug response and develops a tailored therapy based on differences in the epigenetic basis of each patient. Similarly, epigenetic biomarkers have emerged as a promising instrument for the consistent diagnosis and prognosis of cardiovascular diseases. Their good accessibility and feasible methods of detection make them suitable for use in clinical practice. However, multicenter studies with a large sample population are required to determine with certainty which epigenetic biomarkers are reliable for clinical routine. Therefore, this review focuses on current discoveries regarding epigenetic biomarkers and its controversy aiming to improve the diagnosis, prognosis, and therapy in cardiovascular patients

    Mechanisms of action of sacubitril/valsartan on cardiac remodeling : a systems biology approach

    Get PDF
    Sacubitril/Valsartan, proved superiority over other conventional heart failure management treatments, but its mechanisms of action remains obscure. In this study, we sought to explore the mechanistic details for Sacubitril/Valsartan in heart failure and post-myocardial infarction remodeling, using an in silico, systems biology approach. Myocardial transcriptome obtained in response to myocardial infarction in swine was analyzed to address post-infarction ventricular remodeling. Swine transcriptome hits were mapped to their human equivalents using Reciprocal Best (blast) Hits, Gene Name Correspondence, and InParanoid database. Heart failure remodeling was studied using public data available in gene expression omnibus (accession GSE57345, subseries GSE57338), processed using the GEO2R tool. Using the Therapeutic Performance Mapping System technology, dedicated mathematical models trained to fit a set of molecular criteria, defining both pathologies and including all the information available on Sacubitril/Valsartan, were generated. All relationships incorporated into the biological network were drawn from public resources (including KEGG, REACTOME, INTACT, BIOGRID, and MINT). An artificial neural network analysis revealed that Sacubitril/Valsartan acts synergistically against cardiomyocyte cell death and left ventricular extracellular matrix remodeling via eight principal synergistic nodes. When studying each pathway independently, Valsartan was found to improve cardiac remodeling by inhibiting members of the guanine nucleotide-binding protein family, while Sacubitril attenuated cardiomyocyte cell death, hypertrophy, and impaired myocyte contractility by inhibiting PTEN. The complex molecular mechanisms of action of Sacubitril/Valsartan upon post-myocardial infarction and heart failure cardiac remodeling were delineated using a systems biology approach. Further, this dataset provides pathophysiological rationale for the use of Sacubitril/Valsartan to prevent post-infarct remodeling. The new wonder drug in heart failure management, Sacubitril/Valsartan, rejuvenates the heart by preventing its dilation. Using data from myocardial infarction and heart failure samples, we generated a mathematical model to better understand how Sacubitril/Valsartan modulates pathological heart resize and the combined effect of the drug. Our analysis revealed that Sacubitril/Valsartan mainly acts by blocking both, cell death and the pathological makeover of the outer-membrane of the cardiac cells. These two major processes occur after a heart attack. Most importantly, we discovered a core of 8 proteins that emerge as key players in this process. A better understanding of the mechanism of novel cardiovascular drugs at the most basic level may help decipher future therapies and indications

    Noninvasive assessment of an engineered bioactive graft in myocardial infarction: impact on cardiac function and scar healing

    Get PDF
    Cardiac tissue engineering, which combines cells and biomaterials, is promising for limiting the sequelae of myocardial infarction (MI). We assessed myocardial function and scar evolution after implanting an engineered bioactive impedance graft (EBIG) in a swine MI model. The EBIG comprises a scaffold of decellularized human pericardium, green fluorescent protein-labeled porcine adipose tissue-derived progenitor cells (pATPCs), and a customized-design electrical impedance spectroscopy (EIS) monitoring system. Cardiac function was evaluated noninvasively by using magnetic resonance imaging (MRI). Scar healing was evaluated by using the EIS system within the implanted graft. Additionally, infarct size, fibrosis, and inflammation were explored by histopathology. Upon sacrifice 1 month after the intervention, MRI detected a significant improvement in left ventricular ejection fraction (7.5%64.9% vs. 1.4%63.7%; p = .038) and stroke volume (11.565.9 ml vs. 364.5 ml; p = .019) in EBIG-treated animals. Noninvasive EIS data analysis showed differences in both impedance magnitude ratio (20.02 6 0.04 per day vs. 20.48 6 0.07 per day; p = .002) and phase angle slope (20.18°60.24° per day vs.23.52°60.84° per day; p = .004) in EBIG compared with control animals. Moreover, in EBIG-treated animals, the infarct size was 48% smaller (3.4%60.6% vs. 6.5%61%; p = .015), less inflammation was found by means of CD25+ lymphocytes (0.65 6 0.12 vs. 1.26 6 0.2; p = .006), and a lower collagen I/III ratio was detected (0.4960.06 vs. 1.6660.5; p = .019). An EBIG composed of acellular pericardium refilled with pATPCs significantly reduced infarct size and improved cardiac function in a preclinical model of MI. Noninvasive EIS monitoring was useful for tracking differential scar healing in EBIG-treated animals, which was confirmed by less inflammation and altered collagen deposit.Peer ReviewedPostprint (published version

    Physiological conditioning by electric field stimulation promotes cardiomyogenic gene expression in human cardiomyocyte progenitor cells

    Get PDF
    The optimal cell lineage for cardiac-regeneration approaches remains mysterious. Additionally, electrical stimulation promotes cardiomyogenic differentiation of stimulated cells. Therefore, we hypothesized that electrical conditioning of cardiomyocyte progenitor cells (CMPCs) might enrich their cardiovascular potential. CMPCs were isolated from human adult atrial appendages, characterized, and electrically stimulated for 7 and 14 days. Electrical stimulation modulated CMPCs gene and protein expression, increasing all cardiac markers. GATA-binding protein 4 (GATA4) early transcription factor was significantly overexpressed (P = 0.008), but also its coactivator myocyte enhancer factor 2A (MEF2A) was upregulated (P = 0.073) under electrical stimulation. Moreover, important structural proteins and calcium handling-related genes were enhanced. The cardioregeneration capability of CMPCs is improved by electrical field stimulation. Consequently, short-term electrical stimulation should be a valid biophysical approach to modify cardiac progenitor cells toward a cardiogenic phenotype, and can be incorporated into transdifferentiation protocols. Electrostimulated CMPCs may be best-equipped cells for myocardial integration after implantation.Peer ReviewedPostprint (published version

    Ex vivo assessment and in vivo validation of non-invasive stent monitoring techniques based on microwave spectrometry

    Get PDF
    Some conditions are well known to be directly associated with stent failure, including in-stent re-occlusion and stent fracture. Currently, identification of these high-risk conditions requires invasive and complex procedures. This study aims to assess microwave spectrometry (MWS) for monitoring stents non-invasively. Preliminary ex vivo data are presented to move to in vivo validation. Fifteen mice were assigned to receive subcutaneous stent implantations (n¿=¿10) or sham operations (n¿=¿5). MWS measurements were carried out at 0, 2, 4, 7, 14, 22, and 29 days of follow-up. Additionally, 5 stented animals were summited to micro-CT analyses at the same time points. At 29 days, 3 animals were included into a stent fracture subgroup and underwent a last MWS and micro-CT analysis. MWS was able to identify stent position and in-stent stenosis over time, also discerning significant differences from baseline measures (P¿<¿0.001). Moreover, MWS identified fractured vs. non-fractured stents in vivo. Taken together, MWS emerges as a non-invasive, non-ionizing alternative for stent monitoring. MWS analysis clearly distinguished between in-stent stenosis and stent fracture phenomena.Peer ReviewedPostprint (published version

    Ex vivo assessment and in vivo validation of non-invasive stent monitoring techniques based on microwave spectrometry

    Get PDF
    Some conditions are well known to be directly associated with stent failure, including in-stent re-occlusion and stent fracture. Currently, identification of these high-risk conditions requires invasive and complex procedures. This study aims to assess microwave spectrometry (MWS) for monitoring stents non-invasively. Preliminary ex vivo data are presented to move to in vivo validation. Fifteen mice were assigned to receive subcutaneous stent implantations (n = 10) or sham operations (n = 5). MWS measurements were carried out at 0, 2, 4, 7, 14, 22, and 29 days of follow-up. Additionally, 5 stented animals were summited to micro-CT analyses at the same time points. At 29 days, 3 animals were included into a stent fracture subgroup and underwent a last MWS and micro-CT analysis. MWS was able to identify stent position and in-stent stenosis over time, also discerning significant differences from baseline measures (P < 0.001). Moreover, MWS identified fractured vs. non-fractured stents in vivo. Taken together, MWS emerges as a non-invasive, non-ionizing alternative for stent monitoring. MWS analysis clearly distinguished between in-stent stenosis and stent fracture phenomena

    Preclinical scenario of targeting myocardial fibrosis with chimeric antigen receptor (CAR) immunotherapy

    Full text link
    Fibrosis is present in an important proportion of myocardial disorders. Injury activates cardiac fibroblasts, which deposit excess extracellular matrix, increasing tissue stiffness, impairing cardiac function, and leading to heart failure. Clinical therapies that directly target excessive fibrosis are limited, and more effective treatments are needed. Immunotherapy based on chimeric antigen receptor (CAR) T cells is a novel technique that redirects T lymphocytes toward specific antigens to eliminate the target cells. It is currently used in haematological cancers but has demonstrated efficacy in mouse models of hypertensive cardiac fibrosis, with activated fibroblasts as the target cells. CAR T cell therapy is associated with significant toxicities, but CAR natural killer cells can overcome efficacy and safety limitations. The use of CAR immunotherapy offers a potential alternative to current therapies for fibrosis reduction and restoration of cardiac function in patients with myocardial fibrosis

    Deep Learning Analyses to Delineate the Molecular Remodeling Process after Myocardial Infarction

    Get PDF
    Specific proteins and processes have been identified in post-myocardial infarction (MI) pathological remodeling, but a comprehensive understanding of the complete molecular evolution is lacking. We generated microarray data from swine heart biopsies at baseline and 6, 30, and 45 days after infarction to feed machine-learning algorithms. We cross-validated the results using available clinical and experimental information. MI progression was accompanied by the regulation of adipogenesis, fatty acid metabolism, and epithelial-mesenchymal transition. The infarct core region was enriched in processes related to muscle contraction and membrane depolarization. Angiogenesis was among the first morphogenic responses detected as being sustained over time, but other processes suggesting post-ischemic recapitulation of embryogenic processes were also observed. Finally, protein-triggering analysis established the key genes mediating each process at each time point, as well as the complete adverse remodeling response. We modeled the behaviors of these genes, generating a description of the integrative mechanism of action for MI progression. This mechanistic analysis overlapped at different time points; the common pathways between the source proteins and cardiac remodeling involved IGF1R, RAF1, KPCA, JUN, and PTN11 as modulators. Thus, our data delineate a structured and comprehensive picture of the molecular remodeling process, identify new potential biomarkers or therapeutic targets, and establish therapeutic windows during disease progression
    corecore