30 research outputs found
Evaluation of a novel approach for the measurement of RNA quality
<p>Abstract</p> <p>Background</p> <p>Microarray data interpretation can be affected by sample RNA integrity. The ScreenTape Degradation Value (SDV) is a novel RNA integrity metric specific to the ScreenTape<sup>Ā® </sup>platform (Lab901). To characterise the performance of the ScreenTape<sup>Ā® </sup>platform for RNA analysis and determine the robustness of the SDV metric, a panel of intentionally degraded RNA samples was prepared. These samples were used to evaluate the ScreenTape<sup>Ā® </sup>platform against an alternative approach for measuring RNA integrity (Agilent Bioanalyzer RIN value). The samples were also subjected to microarray analysis and the resulting data correlated to the RNA integrity metrics.</p> <p>Findings</p> <p>Measurement of SDV for a panel of intentionally degraded RNA samples ranged from 0 for intact RNA to 37 for degraded RNA, with corresponding RIN values ranging from 10 to 4 for the same set of samples. SDV and RIN scales both demonstrated comparable discrimination between differently treated samples (RIN 10 to 7, SDV 0 to 15), with the SDV exhibiting better discrimination at higher degradation levels. Increasing SDV values correlated with a decrease in microarray sample labelling efficiency and an increase in numbers of differentially expressed genes.</p> <p>Conclusions</p> <p>The ScreenTape<sup>Ā® </sup>platform is comparable to the Bioanalyzer platform in terms of reproducibility and discrimination between different levels of RNA degradation. The robust nature of the SDV metric qualifies it as an alternative metric for RNA sample quality control, and a useful predictor of downstream microarray performance.</p
Developing an intervention to facilitate family communication about inherited genetic conditions, and training genetic counsellors in its delivery.
Many families experience difficulty in talking about an inherited genetic condition that affects one or more of them. There have now been a number of studies identifying the issues in detail, however few have developed interventions to assist families. The SPRinG collaborative have used the UK Medical Research Council's guidance on Developing and Evaluating Complex Interventions, to work with families and genetic counsellors (GCs) to co-design a psycho-educational intervention to facilitate family communication and promote better coping and adaptation to living with an inherited genetic condition for parents and their children (<18 years). The intervention is modelled on multi-family discussion groups (MFDGs) used in psychiatric settings. The MFDG was developed and tested over three phases. First focus groups with parents, young people, children and health professionals discussed whether MFDG was acceptable and proposed a suitable design. Using evidence and focus group data, the intervention and a training manual were developed and three GCs were trained in its delivery. Finally, a prototype MFDG was led by a family therapist and co-facilitated by the three GCs. Data analysis showed that families attending the focus groups and intervention thought MFDG highly beneficial, and the pilot sessions had a significant impact on their family' functioning. We also demonstrated that it is possible to train GCs to deliver the MFDG intervention. Further studies are now required to test the feasibility of undertaking a definitive randomised controlled trial to evaluate its effectiveness in improving family outcomes before implementing into genetic counselling practice.The National Institute of Health Research funded the study but any views expressed do not necessarily reflect those of the Authority. Funded by NIHR reference number: RP-DG-1211-10015
Multi-octave metamaterial reflective half-wave plate for millimeter and sub-millimeter wave applications
The quasi-optical modulation of linear polarization at millimeter and sub-millimeter wavelengths can be achieved by using rotating half-wave plates (HWPs) in front of polarization-sensitive detectors. Large operational bandwidths are required when the same device is meant to work simultaneously across different frequency bands. Previous realizations of half-wave plates, ranging from birefringent multi-plates to mesh-based devices, have achieved bandwidths of the order of 100%. Here we present the design and experimental characterization of a reflective HWP able to work across bandwidths of the order of 150%. The working principle of the novel device is completely different from any previous realization, and it is based on the different phase-shift experienced by two orthogonal polarizations reflecting, respectively, off an electric conductor and an artificial magnetic conductor
Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number variation
One of the benefits of Digital PCR (dPCR) is the potential for unparalleled precision enabling smaller fold change measurements. An example of an assessment that could benefit from such improved precision is the measurement of tumour-associated copy number variation (CNV) in the cell free DNA (cfDNA) fraction of patient blood plasma. To investigate the potential precision of dPCR and compare it with the established technique of quantitative PCR (qPCR), we used breast cancer cell lines to investigate HER2 gene amplification and modelled a range of different CNVs. We showed that, with equal experimental replication, dPCR could measure a smaller CNV than qPCR. As dPCR precision is directly dependent upon both the number of replicate measurements and the template concentration, we also developed a method to assist the design of dPCR experiments for measuring CNV. Using an existing model (based on Poisson and binomial distributions) to derive an expression for the variance inherent in dPCR, we produced a power calculation to define the experimental size required to reliably detect a given fold change at a given template concentration. This work will facilitate any future translation of dPCR to key diagnostic applications, such as cancer diagnostics and analysis of cfDNA
The Sex Difference in Mental Rotation Test Scores May Not Reflect a Difference in Mental Rotation Ability
The largest reported sex difference in human cognition is found on mental rotation tests, which ask participants to compare pictures of three-dimensional objects and decide whether they depict the same or different objects. When the objects are the same, one can be rotated two- or three-dimensionally to match the other. Across cultures, males score up to one standard deviation higher than females on these tests. We administered two mental rotation tests to 123 participants and found that these higher scores likely do not reflect superiority in the process of mental rotation per se, but rather in other aspects of task performance. We found: (1) men are more likely than women to answer correctly when two objects are different, whereas women are more likely to answer incorrectly that they are the same; and (2) individual differences in confidence explain a considerable portion of the male advantage, but differences in spatial encoding ability do not. These results suggest more attention should be paid to individual differences in the various components of spatial ability and task performance, and have implications for evolutionary theories of sex differences in spatial cognition and for efforts to reduce sex differences in spatial ability, especially via training interventions