212 research outputs found
Detection and control of pregnancy hypertension using self-monitoring of blood pressure with automated telemonitoring: cost analyses of the BUMP Randomized Trials
BACKGROUND: Pregnancy hypertension continues to cause maternal and perinatal morbidity. Two linked UK randomized trials showed adding self-monitoring of blood pressure (SMBP) with automated telemonitoring to usual antenatal care did not result in earlier detection or better control of pregnancy hypertension. This article reports the trials’ integrated cost analyses.
METHODS: Two cost analyses. SMBP with usual care was compared with usual care alone in pregnant individuals at risk of hypertension (BUMP 1 trial [Blood Pressure Monitoring in High Risk Pregnancy to Improve the Detection and Monitoring of Hypertension], n=2441) and with hypertension (BUMP 2 trial, n=850). Clinical notes review identified participant-level antenatal, intrapartum, and postnatal care and these were costed. Comparisons between trial arms used means and 95% CIs. Within BUMP 2, chronic and gestational hypertension cohorts were analyzed separately. Telemonitoring system costs were reported separately.
RESULTS: In BUMP 1, mean (SE) total costs with SMBP and with usual care were £7200 (£323) and £7063 (£245), respectively, mean difference (95% CI), £151 (−£633 to £936). For the BUMP 2 chronic hypertension cohort, corresponding figures were £13 384 (£1230), £12 614 (£1081), mean difference £323 (−£2904 to £3549) and for the gestational hypertension cohort were £11 456 (£901), £11 145 (£959), mean difference £41 (−£2486 to £2567). The per-person cost of telemonitoring was £6 in BUMP 1 and £29 in BUMP 2.
CONCLUSIONS: SMBP was not associated with changes in the cost of health care contacts for individuals at risk of, or with, pregnancy hypertension. This is reassuring as SMBP in pregnancy is widely prevalent, particularly because of the COVID-19 pandemic.
REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03334149
Simons Observatory: Broadband Metamaterial Anti-Reflection Cuttings for Large Aperture Alumina Optics
We present the design, fabrication, and measured performance of metamaterial
Anti-Reflection Cuttings (ARCs) for large-format alumina filters operating over
more than an octave of bandwidth to be deployed on the Simons Observatory (SO).
The ARC consists of sub-wavelength features diced into the optic's surface
using a custom dicing saw with near-micron accuracy. The designs achieve
percent-level control over reflections at angles of incidence up to 20.
The ARCs were demonstrated on four 42 cm diameter filters covering the 75-170
GHz band and a 50 mm diameter prototype covering the 200-300 GHz band. The
reflection and transmission of these samples were measured using a broadband
coherent source that covers frequencies from 20 GHz to 1.2 THz. These
measurements demonstrate percent-level control over reflectance across the
targeted pass-bands and a rapid reduction in transmission as the wavelength
approaches the length scale of the metamaterial structure where scattering
dominates the optical response. The latter behavior enables the use of the
metamaterial ARC as a scattering filter in this limit.Comment: 9 pages, 8 figures, submitted to Applied Optic
The balloon-borne large-aperture submillimeter telescope for polarimetry: BLAST-Pol
The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry
(BLAST-Pol) is a suborbital mapping experiment designed to study the role
played by magnetic fields in the star formation process. BLAST-Pol is the
reconstructed BLAST telescope, with the addition of linear polarization
capability. Using a 1.8 m Cassegrain telescope, BLAST-Pol images the sky onto a
focal plane that consists of 280 bolometric detectors in three arrays,
observing simultaneously at 250, 350, and 500 um. The diffraction-limited
optical system provides a resolution of 30'' at 250 um. The polarimeter
consists of photolithographic polarizing grids mounted in front of each
bolometer/detector array. A rotating 4 K achromatic half-wave plate provides
additional polarization modulation. With its unprecedented mapping speed and
resolution, BLAST-Pol will produce three-color polarization maps for a large
number of molecular clouds. The instrument provides a much needed bridge in
spatial coverage between larger-scale, coarse resolution surveys and narrow
field of view, and high resolution observations of substructure within
molecular cloud cores. The first science flight will be from McMurdo Station,
Antarctica in December 2010.Comment: 14 pages, 9 figures Submitted to SPIE Astronomical Telescopes and
Instrumentation Conference 201
Comparison of prestellar core elongations and large-scale molecular cloud structures in the Lupus 1 region
Turbulence and magnetic fields are expected to be important for regulating molecular cloud formation and evolution. However, their effects on sub-parsec to 100 parsec scales, leading to the formation of starless cores, are not well understood. We investigate the prestellar core structure morphologies obtained from analysis of the Herschel-SPIRE 350 mum maps of the Lupus I cloud. This distribution is first compared on a statistical basis to the large-scale shape of the main filament. We find the distribution of the elongation position angle of the cores to be consistent with a random distribution, which means no specific orientation of the morphology of the cores is observed with respect to the mean orientation of the large-scale filament in Lupus I, nor relative to a large-scale bent filament model. This distribution is also compared to the mean orientation of the large-scale magnetic fields probed at 350 mum with the Balloon-borne Large Aperture Telescope for Polarimetry during its 2010 campaign. Here again we do not find any correlation between the core morphology distribution and the average orientation of the magnetic fields on parsec scales. Our main conclusion is that the local filament dynamics---including secondary filaments that often run orthogonally to the primary filament---and possibly small-scale variations in the local magnetic field direction, could be the dominant factors for explaining the final orientation of each core
The Primordial Inflation Polarization Explorer (PIPER)
The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne
cosmic microwave background (CMB) polarimeter designed to search for evidence
of inflation by measuring the large-angular scale CMB polarization signal.
BICEP2 recently reported a detection of B-mode power corresponding to the
tensor-to-scalar ratio r = 0.2 on ~2 degree scales. If the BICEP2 signal is
caused by inflationary gravitational waves (IGWs), then there should be a
corresponding increase in B-mode power on angular scales larger than 18
degrees. PIPER is currently the only suborbital instrument capable of fully
testing and extending the BICEP2 results by measuring the B-mode power spectrum
on angular scales = ~0.6 deg to 90 deg, covering both the reionization
bump and recombination peak, with sensitivity to measure the tensor-to-scalar
ratio down to r = 0.007, and four frequency bands to distinguish foregrounds.
PIPER will accomplish this by mapping 85% of the sky in four frequency bands
(200, 270, 350, 600 GHz) over a series of 8 conventional balloon flights from
the northern and southern hemispheres. The instrument has background-limited
sensitivity provided by fully cryogenic (1.5 K) optics focusing the sky signal
onto four 32x40-pixel arrays of time-domain multiplexed Transition-Edge Sensor
(TES) bolometers held at 140 mK. Polarization sensitivity and systematic
control are provided by front-end Variable-delay Polarization Modulators
(VPMs), which rapidly modulate only the polarized sky signal at 3 Hz and allow
PIPER to instantaneously measure the full Stokes vector (I, Q, U, V) for each
pointing. We describe the PIPER instrument and progress towards its first
flight.Comment: 11 pages, 7 figures. To be published in Proceedings of SPIE Volume
9153. Presented at SPIE Astronomical Telescopes + Instrumentation 2014,
conference 915
Modeling and characterization of the SPIDER half-wave plate
Spider is a balloon-borne array of six telescopes that will observe the
Cosmic Microwave Background. The 2624 antenna-coupled bolometers in the
instrument will make a polarization map of the CMB with approximately one-half
degree resolution at 145 GHz. Polarization modulation is achieved via a
cryogenic sapphire half-wave plate (HWP) skyward of the primary optic. We have
measured millimeter-wave transmission spectra of the sapphire at room and
cryogenic temperatures. The spectra are consistent with our physical optics
model, and the data gives excellent measurements of the indices of A-cut
sapphire. We have also taken preliminary spectra of the integrated HWP, optical
system, and detectors in the prototype Spider receiver. We calculate the
variation in response of the HWP between observing the CMB and foreground
spectra, and estimate that it should not limit the Spider constraints on
inflation
Pointing control for the SPIDER balloon-borne telescope
We present the technology and control methods developed for the pointing
system of the SPIDER experiment. SPIDER is a balloon-borne polarimeter designed
to detect the imprint of primordial gravitational waves in the polarization of
the Cosmic Microwave Background radiation. We describe the two main components
of the telescope's azimuth drive: the reaction wheel and the motorized pivot. A
13 kHz PI control loop runs on a digital signal processor, with feedback from
fibre optic rate gyroscopes. This system can control azimuthal speed with <
0.02 deg/s RMS error. To control elevation, SPIDER uses stepper-motor-driven
linear actuators to rotate the cryostat, which houses the optical instruments,
relative to the outer frame. With the velocity in each axis controlled in this
way, higher-level control loops on the onboard flight computers can implement
the pointing and scanning observation modes required for the experiment. We
have accomplished the non-trivial task of scanning a 5000 lb payload
sinusoidally in azimuth at a peak acceleration of 0.8 deg/s, and a peak
speed of 6 deg/s. We can do so while reliably achieving sub-arcminute pointing
control accuracy.Comment: 20 pages, 12 figures, Presented at SPIE Ground-based and Airborne
Telescopes V, June 23, 2014. To be published in Proceedings of SPIE Volume
914
Instrumental performance and results from testing of the BLAST-TNG receiver, submillimeter optics, and MKID arrays
Polarized thermal emission from interstellar dust grains can be used to map
magnetic fields in star forming molecular clouds and the diffuse interstellar
medium (ISM). The Balloon-borne Large Aperture Submillimeter Telescope for
Polarimetry (BLASTPol) flew from Antarctica in 2010 and 2012 and produced
degree-scale polarization maps of several nearby molecular clouds with
arcminute resolution. The success of BLASTPol has motivated a next-generation
instrument, BLAST-TNG, which will use more than 3000 linear polarization
sensitive microwave kinetic inductance detectors (MKIDs) combined with a 2.5m
diameter carbon fiber primary mirror to make diffraction-limited observations
at 250, 350, and 500 m. With 16 times the mapping speed of BLASTPol,
sub-arcminute resolution, and a longer flight time, BLAST-TNG will be able to
examine nearby molecular clouds and the diffuse galactic dust polarization
spectrum in unprecedented detail. The 250 m detector array has been
integrated into the new cryogenic receiver, and is undergoing testing to
establish the optical and polarization characteristics of the instrument.
BLAST-TNG will demonstrate the effectiveness of kilo-pixel MKID arrays for
applications in submillimeter astronomy. BLAST-TNG is scheduled to fly from
Antarctica in December 2017 for 28 days and will be the first balloon-borne
telescope to offer a quarter of the flight for "shared risk" observing by the
community.Comment: Presented at SPIE Millimeter, Submillimeter, and Far-Infrared
Detectors and Instrumentation for Astronomy VIII, June 29th, 201
Feedhorn-coupled TES polarimeter camera modules at 150 GHz for CMB polarization measurements with SPTpol
The SPTpol camera is a dichroic polarimetric receiver at 90 and 150 GHz.
Deployed in January 2012 on the South Pole Telescope (SPT), SPTpol is looking
for faint polarization signals in the Cosmic Microwave Background (CMB). The
camera consists of 180 individual Transition Edge Sensor (TES) polarimeters at
90 GHz and seven 84-polarimeter camera modules (a total of 588 polarimeters) at
150 GHz. We present the design, dark characterization, and in-lab optical
properties of the 150 GHz camera modules. The modules consist of
photolithographed arrays of TES polarimeters coupled to silicon platelet arrays
of corrugated feedhorns, both of which are fabricated at NIST-Boulder. In
addition to mounting hardware and RF shielding, each module also contains a set
of passive readout electronics for digital frequency-domain multiplexing. A
single module, therefore, is fully functional as a miniature focal plane and
can be tested independently. Across the modules tested before deployment, the
detectors average a critical temperature of 478 mK, normal resistance R_N of
1.2 Ohm, unloaded saturation power of 22.5 pW, (detector-only) optical
efficiency of ~ 90%, and have electrothermal time constants < 1 ms in
transition.Comment: 15 pages, 11 figure
- …