15 research outputs found

    Plasmonic gold nanostructures: optical properties and application in mercury detection

    Get PDF
    This thesis investigates the application of plasmonic gold nanostructures for mercury detection. Various gold and silver single nanostructures and gold nanostructure assemblies were characterised in detail by correlated single nanostructure spectroscopy and electron microscopy. Several routes for mercury detection were explored: plasmon resonance energy transfer (PRET) upon Hg2+ binding to immobilised gold nanoparticle-organic ligand hybrid structures and amalgamation of single immobilised gold nanorods upon chemical and upon electrochemical reduction of Hg2+ ions. The amalgamation approach showed large potential with extraordinary shifts of the nanorods’ scattering spectra upon exposure to reduced mercury; a result of compositional and morphological change induced in the nanorod by amalgamation with mercury. A shift of 5 nm could be recorded for a concentration as low 10 nM Hg2+. Through detailed time-dependent experiments insights into the amalgamation mechanism were gained and a model comprising 5 steps was developed. Finally, spectroelectrochemistry proved to be an excellent way to study in real time in-situ the amalgamation of mercury with gold nanorods paving the way for future work in this field

    Direct observation of mercury amalgamation on individual gold nanorods using spectroelectrochemistry

    Get PDF
    We report on the use of a spectroelectrochemical method for the investigation of mercury amalgamation on gold nanorods. Hg2+ was electrochemically reduced at gold nanorod electrodes, and the consequent optical changes resulting from deposition of mercury were monitored by dark-field microscopy. Nanorods displayed marked scattering color transitions from red to green and longitudinal surface plasmon resonance (LSPR) blue-shifts up to 197 nm. Corresponding cathodic voltammograms showed strong reduction peaks at potentials which were attributed to Hg2+ reduction. The highest optical blue-shifts were observed for working electrodes constituted by well-separated gold nanorods deposited on ITO substrates, which also showed transition from diffusion-limited to steady-state electrochemical behavior. Theoretical simulations were carried out to support experimental results and to obtain further insight into the diffusional behavior of mercury reduction at nanorod electrodes. Real time observation of the amalgamation process was performed by monitoring the evolution of spectral response from single nanorods in the presence of Hg2+ and subjected to either linear sweep voltammetry or chronoamperometry. The analysis confirmed a direct correlation between the occurrence of spectral changes and the formation of an amalgam resulting from deposition and subsequent diffusion of reduced mercury into the nanorods. This work shows the potential of this method for elucidation of reaction mechanisms occurring at nanoscale electrodes and for sensitive detection of mercury for environmental applications

    Facile formation of ordered vertical arrays by droplet evaporation of Au nanorod organic solutions

    Get PDF
    Droplet evaporation is a simple method to induce organization of Au nanorods into ordered superstructures. In general, the self-assembly process occurs by evaporation of aqueous suspensions under strictly controlled experimental conditions. Here we present formation of large area ordered vertical arrays by droplet evaporation of Au nanorod organic suspensions. The uncontrolled (free air) evaporation of such suspensions yielded to formation of ordered nanorod domains covering the entire area of a 5 mm diameter droplet. Detailed investigation of the process revealed that nanorods organized into highly ordered vertical domains at the interface between solvent and air on a fast time scale (minutes). The self-assembly process mainly depended on the initial concentration of nanorod solution and required minimal control of other experimental parameters. Nanorod arrays displayed distinct optical properties which were analyzed by optical imaging and spectroscopy and compared to results obtained from theoretical calculations. The potential use of synthesized arrays as surface-enhanced Raman scattering probes was demonstrated with the model molecule 4-aminobenzenthiol

    Self-Assembly of Gold Nanocrystals into Discrete Coupled Plasmonic Structures

    No full text
    Development of methodologies for the controlled chemical assembly of nanoparticles into plasmonic molecules of predictable spatial geometry is vital in order to harness novel properties arising from the combination of the individual components constituting the resulting superstructures. This paper presents a route for fabrication of gold plasmonic structures of controlled stoichiometry obtained by the use of a di-rhenium thio-isocyanide complex as linker molecule for gold nanocrystals. Correlated scanning electron microscopy (SEM)—dark-field spectroscopy was used to characterize obtained discrete monomer, dimer and trimer plasmonic molecules. Polarization-dependent scattering spectra of dimer structures showed highly polarized scattering response, due to their highly asymmetric D∞h geometry. In contrast, some trimer structures displayed symmetric geometry (D3h), which showed small polarization dependent response. Theoretical calculations were used to further understand and attribute the origin of plasmonic bands arising during linker-induced formation of plasmonic molecules. Theoretical data matched well with experimentally calculated data. These results confirm that obtained gold superstructures possess properties which are a combination of the properties arising from single components and can, therefore, be classified as plasmonic molecules

    Plasmonic detection of mercury via amalgam formation on surface-immobilized single Au nanorods

    No full text
    <p>Au nanorods were used as plasmonic transducers for investigation of mercury detection through a mechanism of amalgam formation at the nanorod surfaces. Marked scattering color transitions and associated blue shifts of the surface plasmon resonance peak wavelengths (<i>λ</i><sub>max</sub>) were measured in individual nanorods by darkfield microscopy upon chemical reduction of Hg(II). Such changes were related to compositional changes occurring as a result of Hg–Au amalgam formation as well as morphological changes in the nanorods’ aspect ratios. The plot of <i>λ</i><sub>max</sub> shifts vs<i>.</i> Hg(II) concentration showed a linear response in the 10–100 nM concentration range. The sensitivity of the system was ascribed to the narrow width of single nanorod scattering spectra, which allowed accurate determination of peak shifts. The system displayed good selectivity as the optical response obtained for mercury was one order of magnitude higher than the response obtained with competitor ions. Analysis of mercury content in river and tap water were also performed and highlighted both the potential and limitation of the developed method for real sensing applications.</p

    Self-Assembly of Gold Nanocrystals into Discrete Coupled Plasmonic Structures

    Get PDF
    Development of methodologies for the controlled chemical assembly of nanoparticles into plasmonic molecules of predictable spatial geometry is vital in order to harness novel properties arising from the combination of the individual components constituting the resulting superstructures. This paper presents a route for fabrication of gold plasmonic structures of controlled stoichiometry obtained by the use of a di-rhenium thio-isocyanide complex as linker molecule for gold nanocrystals. Correlated scanning electron microscopy (SEM)—dark-field spectroscopy was used to characterize obtained discrete monomer, dimer and trimer plasmonic molecules. Polarization-dependent scattering spectra of dimer structures showed highly polarized scattering response, due to their highly asymmetric D∞h geometry. In contrast, some trimer structures displayed symmetric geometry (D3h), which showed small polarization dependent response. Theoretical calculations were used to further understand and attribute the origin of plasmonic bands arising during linker-induced formation of plasmonic molecules. Theoretical data matched well with experimentally calculated data. These results confirm that obtained gold superstructures possess properties which are a combination of the properties arising from single components and can, therefore, be classified as plasmonic molecules

    Facile Formation of Ordered Vertical Arrays by Droplet Evaporation of Au Nanorod Organic Solutions

    No full text
    Droplet evaporation is a simple method to induce organization of Au nanorods into ordered superstructures. In general, the self-assembly process occurs by evaporation of aqueous suspensions under strictly controlled experimental conditions. Here we present formation of large area ordered vertical arrays by droplet evaporation of Au nanorod organic suspensions. The uncontrolled (free air) evaporation of such suspensions yielded to formation of ordered nanorod domains covering the entire area of a 5 mm diameter droplet. Detailed investigation of the process revealed that nanorods organized into highly ordered vertical domains at the interface between solvent and air on a fast time scale (minutes). The self-assembly process mainly depended on the initial concentration of nanorod solution and required minimal control of other experimental parameters. Nanorod arrays displayed distinct optical properties which were analyzed by optical imaging and spectroscopy and compared to results obtained from theoretical calculations. The potential use of synthesized arrays as surface-enhanced Raman scattering probes was demonstrated with the model molecule 4-aminobenzenthiol

    Sulfur-cycling fossil bacteria from the 1.8-Ga Duck Creek Formation provide promising evidence of evolution's null hypothesis

    No full text
    The recent discovery of a deep-water sulfur-cycling microbial biota in the ∌2.3-Ga Western Australian Turee Creek Group opened a new window to life's early history. We now report a second such subseafloor-inhabiting community from the Western Australian ∌1.8-Ga Duck Creek Formation. Permineralized in cherts formed during and soon after the 2.4- to 2.2-Ga “Great Oxidation Event,” these two biotas may evidence an opportunistic response to the mid-Precambrian increase of environmental oxygen that resulted in increased production of metabolically useable sulfate and nitrate. The marked similarity of microbial morphology, habitat, and organization of these fossil communities to their modern counterparts documents exceptionally slow (hypobradytelic) change that, if paralleled by their molecular biology, would evidence extreme evolutionary stasis

    Surface-Enhanced Raman Scattering of 4‑Aminobenzenethiol on Au Nanorod Ordered Arrays

    No full text
    A droplet evaporation/stamping method was employed to fabricate closely packed arrays of Au nanorods aligned parallel or perpendicular to a support. The potential as SERS substrates was investigated using model molecule 4-aminobenzenethiol (4-ABT), for which enhanced signals where obtained compared to the signals of the bulk molecule. Enhancement factors of the order of 10<sup>4</sup> and 10<sup>5</sup> were calculated for parallel and perpendicular arrays, respectively. Quantitative Raman detection of 4-ABT was obtained with detection limits in the nM concentration range. Fabricated arrays displayed good stability and uniformity, showing their potential as sensing platforms for plasmon-induced optical molecular detection

    Sulfur-cycling fossil bacteria from the 1.8-Ga Duck Creek Formation provide promising evidence of evolution's null hypothesis

    No full text
    An ancient deep-sea mud-inhabiting 1,800-million-year-old sulfur-cycling microbial community from Western Australia is essentially identical both to a fossil community 500 million years older and to modern microbial biotas discovered off the coast of South America in 2007. The fossils are interpreted to document the impact of the mid-Precambrian increase of atmospheric oxygen, a world-changing event that altered the history of life. Although the apparent 2-billion-year-long stasis of such sulfur-cycling ecosystems is consistent with the null hypothesis required of Darwinian evolution—if there is no change in the physical-biological environment of a well-adapted ecosystem, its biotic components should similarly remain unchanged—additional evidence will be needed to establish this aspect of evolutionary theory
    corecore