67 research outputs found

    Is Maternal Smoking During Pregnancy a Causal Environmental Risk Factor for Adolescent Antisocial Behavior? Testing Etiological Theories and Assumptions

    Get PDF
    Background—Although many studies indicate that maternal smoking during pregnancy (SDP) is correlated with later offspring antisocial behavior (ASB), recent quasi-experimental studies suggest that background familial factors confound the association. The present study sought to test alternative etiological hypotheses using multiple indices of adolescent ASB, comparing differentially exposed siblings, and testing assumptions in the sibling-comparison design

    The Developmental Origins of a Disposition Toward Empathy: Genetic and Environmental Contributions

    Get PDF
    The authors investigated the development of a disposition toward empathy and its genetic and environmental origins. Young twins' (N Ď­ 409 pairs) cognitive (hypothesis testing) and affective (empathic concern) empathy and prosocial behavior in response to simulated pain by mothers and examiners were observed at multiple time points. Children's mean level of empathy and prosociality increased from 14 to 36 months. Positive concurrent and longitudinal correlations indicated that empathy was a relatively stable disposition, generalizing across ages, across its affective and cognitive components, and across mother and examiner. Multivariate genetic analyses showed that genetic effects increased, and that shared environmental effects decreased, with age. Genetic effects contributed to both change and continuity in children's empathy, whereas shared environmental effects contributed to stability and nonshared environmental effects contributed to change. Empathy was associated with prosocial behavior, and this relationship was mainly due to environmental effects

    Impact of asthma on the brain: evidence from diffusion MRI, CSF biomarkers and cognitive decline

    Get PDF
    Chronic systemic inflammation increases the risk of neurodegeneration, but the mechanisms remain unclear. Part of the challenge in reaching a nuanced understanding is the presence of multiple risk factors that interact to potentiate adverse consequences. To address modifiable risk factors and mitigate downstream effects, it is necessary, although difficult, to tease apart the contribution of an individual risk factor by accounting for concurrent factors such as advanced age, cardiovascular risk, and genetic predisposition. Using a case-control design, we investigated the influence of asthma, a highly prevalent chronic inflammatory disease of the airways, on brain health in participants recruited to the Wisconsin Alzheimer's Disease Research Center (31 asthma patients, 186 non-asthma controls, aged 45-90 years, 62.2% female, 92.2% cognitively unimpaired), a sample enriched for parental history of Alzheimer's disease. Asthma status was determined using detailed prescription information. We employed multi-shell diffusion weighted imaging scans and the three-compartment neurite orientation dispersion and density imaging model to assess white and gray matter microstructure. We used cerebrospinal fluid biomarkers to examine evidence of Alzheimer's disease pathology, glial activation, neuroinflammation and neurodegeneration. We evaluated cognitive changes over time using a preclinical Alzheimer cognitive composite. Using permutation analysis of linear models, we examined the moderating influence of asthma on relationships between diffusion imaging metrics, CSF biomarkers, and cognitive decline, controlling for age, sex, and cognitive status. We ran additional models controlling for cardiovascular risk and genetic risk of Alzheimer's disease, defined as a carrier of at least one apolipoprotein E (APOE) ξ4 allele. Relative to controls, greater Alzheimer's disease pathology (lower amyloid-β42/amyloid-β40, higher phosphorylated-tau-181) and synaptic degeneration (neurogranin) biomarker concentrations were associated with more adverse white matter metrics (e.g. lower neurite density, higher mean diffusivity) in patients with asthma. Higher concentrations of the pleiotropic cytokine IL-6 and the glial marker S100B were associated with more salubrious white matter metrics in asthma, but not in controls. The adverse effects of age on white matter integrity were accelerated in asthma. Finally, we found evidence that in asthma, relative to controls, deterioration in white and gray matter microstructure was associated with accelerated cognitive decline. Taken together, our findings suggest that asthma accelerates white and gray matter microstructural changes associated with aging and increasing neuropathology, that in turn, are associated with more rapid cognitive decline. Effective asthma control, on the other hand, may be protective and slow progression of cognitive symptoms

    A genetically informed study of the associations between maternal age at childbearing and adverse perinatal outcomes

    Get PDF
    We examined associations of maternal age at childbearing (MAC) with gestational age and fetal growth (i.e., birth weight adjusting for gestational age), using two genetically informed designs (cousin and sibling comparisons) and data from two cohorts, a population-based Swedish sample and a nationally representative United States sample. We also conducted sensitivity analyses to test limitations of the designs. The findings were consistent across samples and suggested that, associations observed in the population between younger MAC and shorter gestational age were confounded by shared familial factors; however, associations of advanced MAC with shorter gestational age remained robust after accounting for shared familial factors. In contrast to the gestational age findings, neither early nor advanced MAC was associated with lower fetal growth after accounting for shared familial factors. Given certain assumptions, these findings provide support for a causal association between advanced MAC and shorter gestational age. The results also suggest that there are not causal associations between early MAC and shorter gestational age, between early MAC and lower fetal growth, and between advanced MAC and lower fetal growth.NonePublishe

    Liver-Specific Polygenic Risk Score Is Associated with Alzheimer's Disease Diagnosis

    Get PDF
    BACKGROUND: Our understanding of the pathophysiology underlying Alzheimer's disease (AD) has benefited from genomic analyses, including those that leverage polygenic risk score (PRS) models of disease. The use of functional annotation has been able to improve the power of genomic models. OBJECTIVE: We sought to leverage genomic functional annotations to build tissue-specific AD PRS models and study their relationship with AD and its biomarkers. METHODS: We built 13 tissue-specific AD PRS and studied the scores' relationships with AD diagnosis, cerebrospinal fluid (CSF) amyloid, CSF tau, and other CSF biomarkers in two longitudinal cohort studies of AD. RESULTS: The AD PRS model that was most predictive of AD diagnosis (even without APOE) was the liver AD PRS: n = 1,115; odds ratio = 2.15 (1.67-2.78), p = 3.62×10-9. The liver AD PRS was also statistically significantly associated with cerebrospinal fluid biomarker evidence of amyloid-β (Aβ 42:Aβ 40 ratio, p = 3.53×10-6) and the phosphorylated tau:amyloid-β ratio (p = 1.45×10-5). CONCLUSION: These findings provide further evidence of the role of the liver-functional genome in AD and the benefits of incorporating functional annotation into genomic research

    Effect of Pathway-Specific Polygenic Risk Scores for Alzheimer's Disease (AD) on Rate of Change in Cognitive Function and AD-Related Biomarkers Among Asymptomatic Individuals

    Get PDF
    BACKGROUND: Genetic scores for late-onset Alzheimer's disease (LOAD) have been associated with preclinical cognitive decline and biomarker variations. Compared with an overall polygenic risk score (PRS), a pathway-specific PRS (p-PRS) may be more appropriate in predicting a specific biomarker or cognitive component underlying LOAD pathology earlier in the lifespan. OBJECTIVE: In this study, we leveraged longitudinal data from the Wisconsin Registry for Alzheimer's Prevention and explored changing patterns in cognition and biomarkers at various age points along six biological pathways. METHODS: PRS and p-PRSs with and without APOE were constructed separately based on the significant SNPs associated with LOAD in a recent genome-wide association study meta-analysis and compared to APOE alone. We used a linear mixed-effects model to assess the association between PRS/p-PRSs and cognitive trajectories among 1,175 individuals. We also applied the model to the outcomes of cerebrospinal fluid biomarkers in a subset. Replication analyses were performed in an independent sample. RESULTS: We found p-PRSs and the overall PRS can predict preclinical changes in cognition and biomarkers. The effects of PRS/p-PRSs on rate of change in cognition, amyloid-β, and tau outcomes are dependent on age and appear earlier in the lifespan when APOE is included in these risk scores compared to when APOE is excluded. CONCLUSION: In addition to APOE, the p-PRSs can predict age-dependent changes in amyloid-β, tau, and cognition. Once validated, they could be used to identify individuals with an elevated genetic risk of accumulating amyloid-β and tau, long before the onset of clinical symptoms

    Cerebrospinal Fluid Sphingomyelins in Alzheimer's Disease, Neurodegeneration, and Neuroinflammation

    Get PDF
    BACKGROUND: Sphingomyelin (SM) levels have been associated with Alzheimer's disease (AD), but the association direction has been inconsistent and research on cerebrospinal fluid (CSF) SMs has been limited by sample size, breadth of SMs examined, and diversity of biomarkers available. OBJECTIVE: Here, we seek to build on our understanding of the role of SM metabolites in AD by studying a broad range of CSF SMs and biomarkers of AD, neurodegeneration, and neuroinflammation. METHODS: Leveraging two longitudinal AD cohorts with metabolome-wide CSF metabolomics data (n = 502), we analyzed the relationship between the levels of 12 CSF SMs, and AD diagnosis and biomarkers of pathology, neurodegeneration, and neuroinflammation using logistic, linear, and linear mixed effects models. RESULTS: No SMs were significantly associated with AD diagnosis, mild cognitive impairment, or amyloid biomarkers. Phosphorylated tau, neurofilament light, α-synuclein, neurogranin, soluble triggering receptor expressed on myeloid cells 2, and chitinase-3-like-protein 1 were each significantly, positively associated with at least 5 of the SMs. CONCLUSION: The associations between SMs and biomarkers of neurodegeneration and neuroinflammation, but not biomarkers of amyloid or diagnosis of AD, point to SMs as potential biomarkers for neurodegeneration and neuroinflammation that may not be AD-specific

    Crosswalk study on blood collection-tube types for Alzheimer's disease biomarkers

    Get PDF
    Introduction: Blood-based Alzheimer's disease (AD) biomarkers show promise, but pre-analytical protocol differences may pose problems. We examined seven AD blood biomarkers (amyloid beta [ A β ] 42 , A β 40 , phosphorylated tau [ p - ta u 181 , total tau [t-tau], neurofilament light chain [NfL], A β 42 40 , and p - ta u 181 A β 42 ) in three collection tube types (ethylenediaminetetraacetic acid [EDTA] plasma, heparin plasma, serum). Methods: Plasma and serum were obtained from cerebrospinal fluid or amyloid positron emission tomography-positive and -negative participants (N = 38) in the Wisconsin Registry for Alzheimer's Prevention. We modeled AD biomarker values observed in EDTA plasma versus heparin plasma and serum, and assessed correspondence with brain amyloidosis. Results: Results suggested bias due to tube type, but crosswalks are possible for some analytes, with excellent model fit for NfL ( R 2 = 0.94), adequate for amyloid ( R 2 = 0.40-0.69), and weaker for t-tau ( R 2 = 0.04-0.42) and p - ta u 181 ( R 2 = 0.22-0.29). Brain amyloidosis differentiated several measures, especially EDTA plasma pTa u 181 A β 42 ( d = 1.29). Discussion: AD biomarker concentrations vary by tube type. However, correlations for some biomarkers support harmonization across types, suggesting cautious optimism for use in banked blood

    Prevalence and Clinical Implications of a β-Amyloid–Negative, Tau-Positive Cerebrospinal Fluid Biomarker Profile in Alzheimer Disease

    Get PDF
    IMPORTANCE: Knowledge is lacking on the prevalence and prognosis of individuals with a β-amyloid-negative, tau-positive (A-T+) cerebrospinal fluid (CSF) biomarker profile. OBJECTIVE: To estimate the prevalence of a CSF A-T+ biomarker profile and investigate its clinical implications. DESIGN, SETTING, AND PARTICIPANTS: This was a retrospective cohort study of the cross-sectional multicenter University of Gothenburg (UGOT) cohort (November 2019-January 2021), the longitudinal multicenter Alzheimer Disease Neuroimaging Initiative (ADNI) cohort (individuals with mild cognitive impairment [MCI] and no cognitive impairment; September 2005-May 2022), and 2 Wisconsin cohorts, Wisconsin Alzheimer Disease Research Center and Wisconsin Registry for Alzheimer Prevention (WISC; individuals without cognitive impairment; February 2007-November 2020). This was a multicenter study, with data collected from referral centers in clinical routine (UGOT) and research settings (ADNI and WISC). Eligible individuals had 1 lumbar puncture (all cohorts), 2 or more cognitive assessments (ADNI and WISC), and imaging (ADNI only) performed on 2 separate occasions. Data were analyzed on August 2022 to April 2023. EXPOSURES: Baseline CSF Aβ42/40 and phosphorylated tau (p-tau)181; cognitive tests (ADNI: modified preclinical Alzheimer cognitive composite [mPACC]; WISC: modified 3-test PACC [PACC-3]). Exposures in the ADNI cohort included [18F]-florbetapir amyloid positron emission tomography (PET), magnetic resonance imaging (MRI), [18F]-fluorodeoxyglucose PET (FDG-PET), and cross-sectional tau-PET (ADNI: [18F]-flortaucipir, WISC: [18F]-MK6240). MAIN OUTCOMES AND MEASURES: Primary outcomes were the prevalence of CSF AT biomarker profiles and continuous longitudinal global cognitive outcome and imaging biomarker trajectories in A-T+ vs A-T- groups. Secondary outcomes included cross-sectional tau-PET. RESULTS: A total of 7679 individuals (mean [SD] age, 71.0 [8.4] years; 4101 male [53%]) were included in the UGOT cohort, 970 individuals (mean [SD] age, 73 [7.0] years; 526 male [54%]) were included in the ADNI cohort, and 519 individuals (mean [SD] age, 60 [7.3] years; 346 female [67%]) were included in the WISC cohort. The prevalence of an A-T+ profile in the UGOT cohort was 4.1% (95% CI, 3.7%-4.6%), being less common than the other patterns. Longitudinally, no significant differences in rates of worsening were observed between A-T+ and A-T- profiles for cognition or imaging biomarkers. Cross-sectionally, A-T+ had similar tau-PET uptake to individuals with an A-T- biomarker profile. CONCLUSION AND RELEVANCE: Results suggest that the CSF A-T+ biomarker profile was found in approximately 5% of lumbar punctures and was not associated with a higher rate of cognitive decline or biomarker signs of disease progression compared with biomarker-negative individuals

    The role of dyadic cognitive report and subjective cognitive decline in early ADRD clinical research and trials: Current knowledge, gaps, and recommendations.

    Get PDF
    Efficient identification of cognitive decline and Alzheimer's disease (AD) risk in early stages of the AD disease continuum is a critical unmet need. Subjective cognitive decline is increasingly recognized as an early symptomatic stage of AD. Dyadic cognitive report, including subjective cognitive complaints (SCC) from a participant and an informant/study partner who knows the participant well, represents an accurate, reliable, and efficient source of data for assessing risk. However, the separate and combined contributions of self- and study partner report, and the dynamic relationship between the two, remains unclear. The Subjective Cognitive Decline Professional Interest Area within the Alzheimer's Association International Society to Advance Alzheimer's Research and Treatment convened a working group focused on dyadic patterns of subjective report. Group members identified aspects of dyadic-report information important to the AD research field, gaps in knowledge, and recommendations. By reviewing existing data on this topic, we found evidence that dyadic measures are associated with objective measures of cognition and provide unique information in preclinical and prodromal AD about disease stage and progression and AD biomarker status. External factors including dyad (participant-study partner pair) relationship and sociocultural factors contribute to these associations. We recommend greater dyad report use in research settings to identify AD risk. Priority areas for future research include (1) elucidation of the contributions of demographic and sociocultural factors, dyad type, and dyad relationship to dyad report; (2) exploration of agreement and discordance between self- and study partner report across the AD syndromic and disease continuum; (3) identification of domains (e.g., memory, executive function, neuropsychiatric) that predict AD risk outcomes and differentiate cognitive impairment due to AD from other impairment; (4) development of best practices for study partner engagement; (5) exploration of study partner report as AD clinical trial endpoints; (6) continued development, validation, and optimization, of study partner report instruments tailored to the goals of the research and population
    • …
    corecore