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Abstract 

Background: Brain aging and genetic scores for late-onset Alzheimer’s disease (LOAD) have 

been associated with preclinical cognitive decline and biomarker variations. Compared with an 

overall polygenic risk score (PRS), a pathway-specific polygenic risk score (p-PRS) may be more 

appropriate in predicting a specific biomarker or cognitive component underlying LOAD 

pathology earlier in the lifespan.  

Objective: In this study, we leveraged 10 years of longitudinal data from the Wisconsin Registry 

for Alzheimer’s Prevention and explored changing patterns in cognition and biomarkers at various 

age points along six biological pathways among initially cognitively unimpaired individuals.  

Methods: PRS and p-PRSs with and without apolipoprotein E (APOE) were constructed 

separately based on the significant genes associated with LOAD in a recent genome-wide 

association study meta-analysis and compared to APOE alone. We used a linear mixed-effects 

model to assess the association between PRS/p-PRSs and overall/sub-cognitive dimensions among 

1,175 individuals. We also applied the model to the outcomes of cerebrospinal fluid biomarkers 

for beta-amyloid 42 (Aβ42), Aβ42/40 ratio, total tau, and phosphorylated tau based on 

predetermined hypotheses among 197 individuals. Replication analyses were performed in an 

independent sample.  

Results: We found p-PRSs and the overall PRS can predict preclinical changes in cognition and 

biomarkers, regardless of the inclusion of APOE. The effects of p-PRSs/PRS on rate of change in 

cognition, beta-amyloid, and tau outcomes are dependent on age and appear earlier in the lifespan 

when APOE is included in these risk scores compared to when APOE is excluded.  
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Conclusion: In addition to APOE, the pathway-specific PRSs can predict age-dependent changes 

in beta-amyloid, tau, and cognition. Once validated, they could be used to identify individuals with 

an elevated genetic risk of accumulating beta-amyloid and tau, long before the onset of clinical 

symptoms.  

 

Keywords: ApoE; Alzheimer’s Disease; Aging; Cognition; Biomarkers; Longitudinal Studies.   
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Introduction 

Late-onset Alzheimer’s disease (LOAD) is an age-dependent neurodegenerative disease that is 

clinically manifested by a progressive deterioration of cognitive function, memory, and social 

ability. Abnormal accumulation of proteins such as β-amyloid (Aβ) and tau are two hallmarks that 

play important roles in LOAD pathology long before the clinical symptoms of neurodegeneration 

are evident. Under the amyloid hypothesis, an imbalance between Aβ clearance and Aβ production 

is considered the underlying cause for the initiation of LOAD through the formation of 

extracellular senile plaques in the brain[1]. Previous studies have provided evidence that 

neurobiological pathways, such as β-amyloid precursor protein (APP) processing, altered 

cholesterol metabolism, endocytosis, and tau pathology, are closely linked to Aβ production and 

clearance[2–8]. Tau, on the other hand, is hypothesized to trigger the progression of LOAD by 

forming insoluble filaments and accumulating intracellular neurofibrillary tangles of 

hyperphosphorylated tau in the brain. These accumulations block axonal transport and finally harm 

the synaptic communications between neurons. In addition to the four pathways affecting Aβ, 

neurobiological pathways of LOAD that are related to tau accumulation among LOAD patients 

include immune response and axonal development[2–6,8–11].  

Genetics play a major role in neurodegeneration in LOAD. LOAD is highly polygenic, and the 

heritability estimates from twin studies range from 58% to 79%[12]. The apolipoprotein E (APOE) 

gene is the strongest known genetic risk factor for LOAD, with the APOE ε4 allele conferring 

increased risk and the APOE ε2 allele conferring a protective effect relative to the APOE ε3 allele. 

A recent meta-analysis of genome-wide association studies (GWAS), which included more than 

94,000 individuals with European ancestry, validated 20 previously reported risk loci and 

discovered five novel, susceptibility single-nucleotide polymorphisms (SNPs)[13]. However, 
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except for APOE, most of the discovered genetic variants only exhibit tiny effects on the risk of 

LOAD, and therefore the prediction from any single genetic variant is limited. Polygenic risk 

scores (PRSs), on the other hand, sum the effects of multiple independent genetic risk variants and 

convert the overall genetic burden to a single score. This score has been utilized under many 

clinical settings and has been found to serve as a good predictor of disease risk[14,15]. Although 

an overall PRS that combines all genetic risk variants is more commonly used and may be more 

powerful in the prediction of the overall cognitive status or LOAD risk, a pathway-specific 

polygenic risk score (p-PRS) that sums individual SNPs under a specific neurobiological pathway 

may be more appropriate in predicting a specific biomarker or cognitive component (such as the 

beta-amyloid 42/40 ratio, phosphorylated tau, or executive function) underlying LOAD 

pathology[16]. 

To date, a constellation of studies have been published to examine the prediction performance of 

p-PRS on LOAD disease risk, cognitive deterioration, and biomarker variation among people with 

or without LOAD; however, the study findings are mixed. Previous research from our group 

examined the prediction performance of p-PRSs under three pathways on cognition, Pittsburgh 

compound B (PiB) amyloid accumulation and cerebrospinal fluid (CSF) Aβ and tau using a 

prospective cohort of 1,200 asymptomatic individuals[16]. We found that p-PRSs under all three 

pathways were not predictive of the overall or component cognitive dimensions, whereas p-PRSs 

in the Aβ and cholesterol pathways were good predictors of variations of PiB amyloid 

accumulation and CSF Aβ and tau. However, the predictive performance was significantly 

sacrificed with the exclusion of the APOE variants. Another team investigated the effect of p-PRSs 

under seven pathways on cortical thickness using a longitudinal population cohort of 544 

individuals[17]. Promising results were discovered in the APP metabolism, cholesterol 
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metabolism, and endocytosis pathways when APOE was included; however, only the APP 

metabolism pathway remained predictive after adjustment for the APOE variants. A recent study 

estimated the risk of LOAD among 1,779 Dutch individuals using p-PRSs in five major pathways 

involved in LOAD[18]. They found that all p-PRSs except for angiogenesis were significantly 

associated with increased risk of LOAD, regardless of adjustment for the APOE variants. Several 

reasons can explain the discrepant results among the existing AD-related p-PRS analyses, but it is 

likely mainly because the AD outcomes outlined in the current literature are different and the 

methods for pathway-gene-variant mapping did not draw from a comprehensive body of literature. 

In addition, aging is the strongest factor associated with variation in the endophenotypes and 

cognitive decline, but it was not considered as more than a covariate in the existing literature when 

assessing the predictive performance of p-PRSs on cognition and LOAD-related biomarkers. A 

recent study leveraging a 25-year longitudinal cohort of non-demented individuals showed that the 

overall LOAD genetic risk on cognitive decline is age-dependent during the life course[19].  

In the present study, we updated findings from Darst et al. (2017) with five additional years of 

follow up data from an ongoing longitudinal cohort of cognitively healthy adults enriched for a 

parental history of AD from the Wisconsin Registry for Alzheimer’s Prevention (WRAP) to 

explore the potential of p-PRSs in the prediction of cognitive deterioration and changes in LOAD-

related biomarkers over time. Specifically, after a comprehensive review of the existing literature 

on the LOAD disease pathways and genetic functions of the single most significant variant from 

each gene, as identified by the recent GWAS meta-analysis, we constructed weighted PRSs for 

APP metabolism, cholesterol metabolism, endocytosis, tau pathology, immune response, and 

axonal development. For each p-PRS, we tested its association with an overall cognitive composite 

score (Preclinical Alzheimer Cognitive Composite – 3 (PACC-3)), cognitive component 
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composite scores (Immediate Learning, Delayed Recall, and Executive Function), and biomarkers 

of Aβ accumulation (CSF Aβ42 and CSF Aβ42/40 ratio), neurodegeneration (CSF total tau (T-

tau)), and tau pathology (CSF phosphorylated tau (P-tau)), while taking genetic heterogeneity by 

age into account. To check the robustness of the results, we further performed a replication analysis 

using an independent sample of cognitively healthy individuals from the Wisconsin Alzheimer’s 

Disease Research Center (ADRC). 

 

Methods 

Study participants 

Data leveraged in this study originated from WRAP, an ongoing longitudinal prospective cohort 

study of middle-aged adults who were cognitively healthy at enrollment and spoke English (N > 

1,500). WRAP is enriched for participants with a parental history of clinical AD, increasing the 

proportion of individuals who will experience AD pathology and cognitive decline during the 

course of the study. The details of the study design have been described elsewhere[20]. The WRAP 

study began recruiting participants in 2001 with an initial follow-up after four years and 

subsequent follow-up every two years. In general, the participants were between 40 and 65 years 

old at baseline. Siblings of WRAP participants were allowed to enroll. Participants were given an 

extensive battery of neuropsychological tests at each visit. The maximum number of WRAP visits 

available at the time of analysis was seven. In the present study, the sample was limited to self-

reported non-Hispanic Caucasian participants to match the race and ethnicity of the participants in 

the GWAS meta-analysis from which the weights for the PRS were drawn. We excluded data from 

the first wave of WRAP because the cognitive outcome examined in this study cannot be computed 
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using the neuropsychological tests administered in the first WRAP visit. Data from the seventh 

visit of WRAP were excluded because data collection in the seventh wave is ongoing and data 

from this wave were only available for less than 50 participants. Compared to the previous p-PRS 

study on the LOAD-related outcome using WRAP, the present study includes additional data from 

two more WRAP visits (approximately four years in calendar length). This study was conducted 

with the approval of the University of Wisconsin Institutional Review Board, and all subjects 

provided signed informed consent before participation. 

 

Neuropsychometric assessments 

As described above, participants were given a battery of neuropsychological tests for the 

assessment of cognitive function at each WRAP visit. In the present study, we measured the overall 

cognitive performance using the PACC-3 score based on work by Donohue and colleagues[21]. 

Specifically, this composite score is computed by standardizing and averaging performance from 

three tests that assess the memory and executive function of participants: Rey Auditory Verbal 

Learning (RAVLT; Trials 1-5), Logical Memory II total score, and Wechsler Adult Intelligence 

Scale-Revised (WAIS-R) Digit Symbol score[22]. In addition to the overall cognitive 

performance, we also examined domain-specific cognitive performance for immediate learning, 

delayed recall, and executive function[23]. The immediate learning domain-specific composite 

score was derived from the sum of learning trials in RAVLT, Wechsler Memory Scale-Revised 

(WMS-R) logical memory I total score, and Brief Visuospatial Memory Test-Revised (BVMT-R) 

immediate recall score. A delayed recall domain-specific composite score is constructed based on 

the sum of the RAVLT delayed score, WMS-R logical memory delayed recall score, and BVMT-

R delayed recall score. The executive function domain-specific composite score is obtained by 
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standardizing and averaging individual performance from the Trail-Making Test part B (TMT-B) 

Stroop test (color-word interference, STROOP) and WAIS-R digit symbol total score. 

 

CSF collections, quantification, and analysis 

CSF measurements examined in the present study include Aβ42, Aβ42/40 ratio, T-tau, and P-tau. 

Previous studies have indicated that CSF Aβ42 levels are negatively associated with amyloid 

burden; however, higher levels of CSF T-tau and P-tau are signals of an increased risk of 

LOAD[24]. A growing body of evidence has recommended the use of CSF Aβ42/40 ratio as a 

biomarker to identify early amyloid pathology because CSF Aβ42/40 ratio has greater predictive 

and diagnostic power in early diagnosis of LOAD compared to the individual biomarker CSF Aβ42 

alone[25]. The literature has reported a negative association between levels of CSF Aβ42/40 ratio 

and LOAD risk[26]. Details and methods for the WRAP CSF processing have been described 

elsewhere[27]. In brief, 22 mL of CSF were collected through gentle extraction and combined into 

a 30 mL polypropylene tube. All CSF samples were processed at the Clinical Neurochemistry 

Laboratory at the Sahlgrenska Academy of the University of Gothenburg in Sweden using the 

same batch of Roche NeuroToolKit reagents (Roche Diagnostics International Ltd, Rotkreuz, 

Sitzerland) under strict quality control procedures as previously described.[28].  

 

DNA collection, genotyping, and quality control 

Details about genomic data collection have been described elsewhere[16,29]. Briefly, we used the 

PUREGENE DNA Isolation Kit to extract DNA from whole blood samples, and then we used UV 

spectrophotometry to quantify DNA concentrations. Of the 23 SNPs included in the analysis, 21 
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were genotyped in 1,448 individuals using competitive allele-specific PCR-based KASPTM 

genotyping assays (LGC Genomics, Beverly, MA). Duplicate quality control (QC) samples had 

99.9% genotype concordance, and all discordant genotypes were set to missing. The QC was 

carried out using PLINK v1.07. Individuals with high missingness of alleles (>10%) were 

removed. A total of 1,415 individuals remained in the sample after QC procedures. All 21 SNPs 

had call rates >95% and were in Hardy-Weinberg equilibrium (HWE). 

Two SNPs (rs12459419 from CD33 and rs593742 from ADAM10) that were not genotyped by the 

KASPTM assays were extracted from genome-wide genotyping performed using the Illumina 

Infinium Expanded Multi-Ethnic Genotyping Array (MEGAEX) at the University of Wisconsin 

Biotechnology Center. Individuals with gender inconsistencies and individuals and SNPs with 

missingness >5% were excluded. Samples from individuals of genetically-defined European 

descent were then imputed using the Michigan Imputation Server and the Haplotype Reference 

Consortium (HRC) reference panel. Variants with a low imputation quality score (R2 < 0.8), with 

a low minor allele frequency (MAF, MAF < 0.001), or outside of HWE were subsequently 

removed after imputation. PLINK 2.0 was used to extract the aforementioned two SNPs. A total 

of 1,198 individuals with data for all 23 SNPs remained after QC. 

 

Mapping variants to pathways  

To address the limitations in the traditional pathway-gene-variant mapping method in p-PRS 

studies that did not draw from a comprehensive body of literature and relieve concerns about the 

validity (e.g., overweighting or underweighting a particular variant, see Discussion) of the novel 

approach in the p-PRS construction proposed recently[18], we combined the merits of these two 
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approaches and designed a new but conservative strategy to map genetic variants to various LOAD 

pathways. First, we comprehensively browsed pathways explored in the past LOAD-related p-

PRSs studies published in peer-reviewed journals between 2017 and early 2020 to determine 

pathways that had been widely explored[16–18]. After a review of the literature, we included six 

pathways in the present analysis: APP metabolism, cholesterol metabolism, endocytosis, tau 

pathology, immune response, and axonal development. Second, we narrowed our focus to the 

genes that were genome-wide significant, as identified by the most recent and largest International 

Genomics of Alzheimer’s Project (IGAP) GWAS meta-analysis on diagnosed AD[13]. Also 

included were three genes (MEF2C, NME8, and CD33) that were found to be genome-wide 

significant by previous GWAS meta-analyses and that were widely mentioned in previous AD 

review papers and were marginally significant in Kunkle et al. (2019)[30–32]. Third, we 

extensively browsed recent review papers on LOAD pathology published between 2017 and early 

2020, with the number of citations set to higher than 5[2–8]. Then we counted the number of times 

the genes identified in step 2 presented in any of the specific pathways in the papers we reviewed. 

A specific gene was finally counted toward one of the pathways identified in step 1 only if more 

than 50% of the reviewed literature showed evidence that this gene belongs to that particular 

LOAD pathway. We finally included 22 genes in the main analysis under six pathways: APP 

metabolism (CLU, SORL1, ABCA7, PICALM, ADAM10, APOE), cholesterol metabolism (CLU, 

SORL1, ABCA7, APOE), endocytosis (SORL1, ABCA7, PICALM, BIN1, CD2AP, PTK2B, 

FERMT2, SLC24A4, APOE), tau pathology (BIN1, FERMT2, CASS4, APOE), immune response 

(CLU, ABCA7, CR1, INPP5D,HLA-DRB1, TREM2, EPHA1, MS4A6A, CD33, MEF2C), and 

axonal development (EPHA1, FERMT2, CASS4, SPI1, NME8) (Supplemental Figure 1).  

Polygenic risk score and pathway-specific polygenic risk scores 
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For the PRS/p-PRS analyses, genetic variants other than the APOE variants were coded additively 

by counting the number of risk alleles based on IGAP summary statistics. APOE was coded 

according to the odds ratios (ORs) of ε2, ε3, and ε4 genotypes based on rs7412 and rs429358 in 

the meta-analysis of APOE genotype frequencies from AlzGene[33]. Specifically, we constructed 

an APOE score using the ε2/ε2 genotype as the reference (ε2/ε2, OR=1): OR(ε2/ε3) = 1.38, 

OR(ε3/ε3) = 2, OR(ε2/ε4) = 4.45, OR(ε3/ε4) = 6.78, OR(ε4/ε4) = 25.84[16]. Then, we log-

transformed and added the score to the corresponding PRS/p-PRS. Of the 21 genes that were 

included in the present analysis other than APOE, the single most significant variant from each of 

the 21 genes identified by IGAP GWAS meta-analysis was used in the construction of PRS and p-

PRS. PRS and p-PRS were calculated using the formula 𝑃𝑅𝑆𝑖 =
∑ ln(𝑂𝑅𝑛)∗𝐶𝑛
𝑘
𝑛=𝑙

𝑀
, where i represents 

the ith individual whose PRS is calculated by summing all SNPs n in the pathway from the first 

SNP l to last SNP k; OR is the odds ratio of the risk allele for SNP n from the IGAP GWAS meta-

analysis; C is the number of risk alleles for SNP n for individual i; and M represents the number 

of non-missing SNPs under each predetermined pathway observed in individual i. In addition to 

the p-PRS, an overall PRS by including all 22 genes was constructed to examine the overall genetic 

effect by summing SNPs in all pathways of LOAD being investigated on the outcome of interest. 

A higher PRS/p-PRS indicates a higher genetic risk for LOAD. Since the effect size of APOE 

alone is known to be large, we excluded APOE for the pathways that theoretically should include 

APOE to examine the p-PRS on the outcome beyond APOE alone. We also tested the independent 

association between the APOE score and the outcome of interest to quantify the effect of APOE 

alone. To facilitate comparison across various pathways, all PRS, p-PRSs, and APOE scores were 

standardized with a mean of 0 and a standard deviation of 1 at baseline. 
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Statistical analysis 

We developed a set of linear mixed effect models fitted with maximum likelihood to examine the 

genetic association with cognitive outcomes and LOAD-related biomarkers by accounting for 

within-family and within-individual correlations while allowing for missing data. All analyses 

were performed using the MIXED procedure implemented in SAS 9.4. Following the previous 

literature, we included random intercepts for family and study subjects[16,19]. WRAP 

investigators have reported the nonlinear effect of age on cognitive deterioration, and we therefore 

included a linear age, quadratic age, and cubic age in the model with cognitive outcomes to achieve 

better model fit[20]. For the biomarker analysis, we first used spaghetti plots to check the 

individual trajectory in the change of biomarkers by age and then determine the appropriate 

functional form of age based on the visualization of individual trajectories. To better model the 

dynamic relationship between aging, genetic risk, and LOAD-related outcomes, we further 

included an interaction term between PRS/p-PRS and all age terms to control for the potential age-

dependent genetic risk on all outcomes of interest. In addition to the PRS/p-PRSs, age, and 

interaction between PRS and p-PRSs mentioned above, additional covariates include gender, 

education, practice effect (only adjusted in cognitive-related outcomes and as quantified by the 

number of tests completed prior to the current test), and the first five genetic principal components 

of ancestry[34]. We assessed the performance of each PRS/p-PRS and interaction term between 

age and PRS/p-PRS using the partial likelihood ratio r2 (𝑟𝐿𝑅
2 )[35,36]. No corrections for multiple 

testing were performed. 

 

Replication analysis 
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We replicated all analyses performed in the WRAP sample within the Wisconsin ADRC, which 

began enrolling participants in 2009. Because the Wisconsin ADRC administered a different 

battery of neuropsychological tests compared to WRAP, we could only replicate our analyses for 

the overall cognitive performance (PACC-3) and CSF-related outcomes. We replicated our 

findings using two samples extracted from the Wisconsin ADRC. The first sample is the IMPACT 

cohort, for which the enrollment criteria (age range of 45-65 at baseline, cognitively intact, and 

enriched for a parental history of AD) are the most similar and comparable to the WRAP sample. 

The biggest limitation of the IMPACT sample is that most of the participants are younger than age 

65 so the sample may not be old enough for us to observe any effect caused by genetics or aging 

in late life. To address this limitation, we supplemented the IMPACT sample with the Wisconsin 

ADRC healthy older controls (HOCs), which includes people who are older than 65 at enrollment 

and do not meet the National Institute on Aging and Alzheimer’s Association (NIA-AA) criteria 

for mild cognitive impairment (MCI) or the National Institute of Neurological and Communicative 

Disorders and Stroke and Alzheimer’s Disease and Related Disorders Association (NINCDS-

ADRDA) criteria for probable AD. We called this combined sample the All Healthy Controls 

(AHC) sample. All replication analyses in the Wisconsin ADRC were restricted to non-Hispanic 

Caucasian participants. 

The Wisconsin ADRC administered a different battery of neuropsychological tests than WRAP, 

which resulted in a substantial missingness in the score of Logical Memory II Delayed Recall and 

Wechsler Adult Intelligence Scale-Revised, Digit Symbol. To make the best use of the current 

information, we consulted neuropsychologists in the Wisconsin ADRC and created a PACC-3-

TMT score to replace PACC-3 in the replication analysis. Specifically, we converted the Craft 

Story score to an estimated Logical Memory score based on a published crosswalk table and 
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followed the previous practice of substituting the Digit Symbol score with the points received in 

the TMT-B test[22,37]. Since the published crosswalk table is only available for converting the 

Craft Story score to the Logical Memory score for the first five visits, we restricted our replication 

analysis using only data from the first five Wisconsin ADRC visits. The final PACC-3-TMT score 

was computed by standardizing and averaging the results from RAVLT, the estimated Logical 

Memory score, and the TMT-B test. The substantial missingness in the score of the Logical 

Memory score and Digit symbol makes it difficult to assess the correlation between PACC-3 and 

PACC-3-TMT in the Wisconsin ADRC; therefore, we used the same method to construct a PACC-

3-TMT score in the WRAP and assessed the correlation between PACC-3 and PACC-3-TMT in 

the WRAP sample. 

The Wisconsin ADRC employed the same methods of collection, processing, and quantification 

for the CSF data as those in WRAP. Details about genomic data collection and QC have been 

described elsewhere[16,38]. Briefly, the top significant SNPs from 21 genes except for ADAM10 

were genotyped by LGC Genomics (Beverly, MA). No genotypes were removed due to discordant 

genotypes or low call rates (<95%) or for being outside of HWE. Two individuals with high 

missingness of alleles (>10%) were excluded from subsequent analyses. Only the APP metabolism 

pathway-specific PRS and overall PRS were affected by the exclusion of the ADAM10 gene, but 

we expect the impact will be small due to the small effect size (β=-0.065) of the top significant 

SNP from ADAM10. The methods of constructing the PRS, p-PRS, and APOE scores are the same 

as those in WRAP analysis. 

We leveraged a linear mixed effect model fitted by maximum likelihood to examine the genetic 

association with the overall cognitive performance and LOAD-related biomarkers by accounting 

for within-individual correlations and allowing for missing data. All analyses were performed 
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using SAS 9.4. All other statistical methods in the replication analyses are the same as those 

described in the WRAP analysis, except for the exclusion of genetic principal components of 

ancestry as covariates because genome-wide data and, thus, genetic principal components for the 

full sample are not available in the Wisconsin ADRC genomic dataset. 

 

Results 

Descriptive statistics for samples and participants 

Table 1 presents the demographic features of WRAP participants included in this study. Briefly, a 

total of 1,175 individuals with available genetic, cognitive, and demographic data remained in the 

sample for up to five waves (~8 years) after data cleaning. A subset of 197 WRAP participants had 

CSF data for up to five waves. Demographic characteristics are comparable between the cognitive 

and CSF samples. The sample with CSF is slightly older at baseline than the full WRAP sample 

because WRAP CSF collection began later during the WRAP study. WRAP participants are 

generally highly educated, female, and enrolled at middle age, and a majority have a parental 

history of AD. The APOE score is not available for five participants in the full sample and one 

participant in the CSF sample because of missing allele information for either rs7412 and/or 

rs429358. Following the previous literature, we decided to keep these individuals in the analysis 

because data are available on other genetic variants we are interested in and the magnitude of 

missingness is small.  

 

Cognitive outcomes 
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Figure 1 presents the genetic risk of PRS/p-PRS on the rate of cognitive change by age between 

50 and 80 years old in WRAP. An age-dependent association was observed between PRS/p-PRSs 

and all cognitive outcomes regardless of the inclusion of APOE, even though the longitudinal 

trends vary by pathway and outcome. Specifically, when including the APOE variants before the 

age of 65, we observed a stable, nearly zero, and statistically insignificant association between 

cognitive outcomes and p-PRSs of all pathways for every cognitive outcome. However, the genetic 

risk of all LOAD pathways (as quantified by p-PRS) on every cognitive outcome grows 

exponentially and remains statistically significant after WRAP participants reach the age of 65 

years. When APOE is excluded, the age-dependent genetic risk for p-PRSs on cognitive outcomes 

still exists for some pathways but is less obvious (lag effect, slower risk growth rate, and smaller 

effect size) compared to that of APOE alone and when APOE is included in these pathways. 

Specifically, for the immediate learning composite score, only p-PRSs under the endocytosis and 

APP metabolism pathways are significantly associated with cognitive decline once people reach 

age 80. For the delayed recall composite score, we observed increased and statistically significant 

adverse genetic effects for the overall PRS once people reach age 80, as well as for the p-PRSs 

under the endocytosis, APP metabolism, and cholesterol metabolism pathways once people reach 

age 75. For the executive function composite score, the overall PRS and p-PRSs under the 

endocytosis, cholesterol metabolism, and immune response pathways are significantly and 

adversely associated with cognition once people reach age 75. For the PACC-3 score, the adverse 

genetic effect starts to occur once WRAP participants reach age 75 for the overall PRS and p-PRSs 

under the endocytosis, APP metabolism, and cholesterol metabolism pathways. We used a reduced 

set of WRAP participants who have complete data in all PRS/p-PRSs to compare the performance 

of each PRS/p-PRS in explaining the amount of variation in the overall and domain-specific 
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cognitive composite score, as measured by 𝑟𝐿𝑅
2  and presented in supplementary table 1. Consistent 

with Darst (2017), the largest 𝑟𝐿𝑅
2  for a single PRS/p-PRS is about 0.2% when APOE is included 

and 0.1% when APOE is excluded, which indicates that almost none of the model variance was 

explained by any of the single PRS/p-PRS. When the interaction between age and PRS/p-PRS was 

included, an additional 1% of the model variation was explained for all pathways when APOE was 

included, but the additional gain in model variation explained is significantly sacrificed after 

APOE was excluded.  

 

CSF biomarker outcomes 

Figure 2 presents the genetic risk of PRS/p-PRS on the rate of biomarker change by age between 

50 and 80 years old for WRAP participants. Like cognitive outcomes, an age-dependent 

association was observed between PRS/p-PRSs and all AD-related biomarkers regardless of the 

inclusion of APOE. Specifically, when APOE is included, we observed an adverse effect of p-

PRSs under all pathways for Aβ42 beginning at age 60 and increasing linearly with age. The 

adverse effect of p-PRSs on Aβ42/40 ratio showed a pattern similar to Aβ42 but appeared earlier, 

at age 55. We also observed an age-dependent genetic risk on T-tau and P-tau for all pathways 

when APOE was included, but the significant adverse effect of p-PRSs appeared a decade later 

than that on the beta-amyloid outcome. When APOE was excluded, the age-dependent genetic risk 

for p-PRSs on biomarkers still existed for some pathways but was less obvious (lag effect, slower 

risk growth rate, and smaller effect size) compared to that of APOE alone and when APOE was 

included in these pathways. Specifically, we observed a statistically significant adverse effect on 

Aβ42 for the p-PRSs under APP metabolism and cholesterol metabolism once people reach age 

70, and immune response pathway after people reach 75. Similar findings were observed for 
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Aβ42/40 ratio, but the significant adverse effects of the p-PRSs under APP metabolism, cholesterol 

metabolism, and immune response appeared about 5~10 years earlier than those predicted for the 

change of Aβ42, and the overall PRS had a significant adverse effect starting at age 65. 

Surprisingly, the removal of APOE from p-PRSs does not affect the prediction performance on tau 

for the pathways that should theoretically include APOE. For P-tau, after the removal of APOE, 

the adverse effect of p-PRSs appears once people reach age 65 for the APP metabolism and 

cholesterol metabolism pathway; at age 70 for the overall PRS and p-PRS under the endocytosis 

pathway; and at age 75 for the immune response p-PRS. The statistically significant adverse effect 

of the p-PRSs under APP metabolism and cholesterol metabolism on T-tau appeared once people 

reach age 65, whereas p-PRSs under endocytosis and overall PRS were positively associated with 

T-tau accumulation once people reach age 75. We used a reduced set of WRAP participants who 

have complete data in all PRS/p-PRSs to compare the performance of each PRS/p-PRS in 

explaining the amount of variation in the LOAD-related biomarkers, as measured by 𝑟𝐿𝑅
2  and 

presented in supplementary table 2. When APOE is included, single p-PRS/PRS can explain on 

average, 3~4% variance in Aβ42, 7-8% variance in Aβ42/40, and 1% variance in T-tau/P-tau. 

Adding an interaction between PRS/p-PRS and age resulted in an additional 3~4%, 1~3%, 1-2% 

gain in the variance explained for Aβ42, Aβ42/40, and T-tau/P-tau, respectively. For beta-amyloid 

outcomes, the variance being-explained by the single p-PRS/PRS and the additional gain in model 

variation explained as a result of the interaction between age and PRS/p-PRSs was significantly 

sacrificed after APOE was excluded. However, the removal of APOE from p-PRS/PRS doesn't 

substantially affect the variance explained by the PRS and interaction term for the tau outcome.  

 

Replication analysis 
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We used the AHC combined sample from the Wisconsin ADRC to replicate our findings in 

WRAP. Table 2 details the Wisconsin ADRC participant characteristics for the cognition analysis, 

the mean baseline age for the AHC cohort is 59.95. The mean education is just over 16 years. 

About 35% of participants in the AHC cohort are males, and 70% have a family history of AD. 

The basic characteristics are similar between the WRAP and AHC cohorts, except for the baseline 

enrollment age. The baseline enrollment age in WRAP is about 5 years younger than the AHC 

sample because we included a sample of healthy older controls in the AHC sample, with an initial 

enrollment age higher than 65 years. Similar characteristics were found in the biomarker samples.  

For the cognition analysis, the correlation between PACC-3 and PACC-3-TMT is about 0.93 in 

the WRAP sample. The results from the Wisconsin ADRC are mostly consistent with the WRAP 

findings in terms of the age-dependent genetic risk variation trend (Supplementary Figure 2). 

Specifically, the age-dependent genetic effect on the PACC-TMT score and its trend were 

observed in the AHC cohort, even though the effects are lagged and less obvious than the WRAP 

findings. When APOE is included, the overall PRS and p-PRSs under the endocytosis and tau 

pathology show a significant adverse effect once people reach age 85. APOE is not significantly 

associated with the rate of cognitive change in any age range. When APOE is excluded, the adverse 

effect of the p-PRSs starts to occur at around age 70 under cholesterol metabolism and 75 for APP 

metabolism. A reduced set of Wisconsin ADRC participants who have complete data in all PRS/p-

PRSs were used to compare the performance of each PRS/p-PRS (supplementary table 3). Similar 

to the WRAP findings, the largest 𝑟𝐿𝑅
2  for a single PRS/p-PRS is about 0.2% in the AHC sample. 

The largest 𝑟𝐿𝑅
2  for PRS/p-PRSs with and without APOE increased by 0.4% and 0.7% with the 

addition of the interaction between PRS/p-PRSs and age, respectively.  
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The age-dependent genetic risk of PRS/p-PRSs is also observed in the biomarker analysis 

(Supplementary Figure 3). Specifically, when APOE is included, the adverse effect of PRS/p-PRSs 

on Aβ42 under all pathways starts to appear once people reach age 55 and increases with age. 

Results for Aβ42/40 ratio are very consistent with the WRAP findings. When APOE is included, 

the significant adverse effect of PRS/p-PRSs of all pathways occurs once people reach age 55 and 

is similar to the effect of APOE alone. Results for T-tau and P-tau are also very similar to the 

WRAP findings when APOE is included. The adverse effect of the PRS/p-PRSs of all the pathways 

starts to appear once people reach age 65 for both P-tau and T-tau. When APOE is excluded, 

similar to the WRAP findings, only p-PRSs under the APP and cholesterol metabolism pathways 

start to show a significant adverse effect on Aβ42 once people reach age 65. For Aβ42/40 ratio, 

when APOE is excluded, age-dependent genetic risk was observed for p-PRS starting at age 65 for 

the cholesterol metabolism pathway, but the effect size is smaller than the APOE score. For P-tau, 

we observed the significant adverse effect for p-PRS after people reach 70 for the axonal 

development pathway and after people reach 75 for endocytosis, tau pathology, and overall PRS. 

Significant adverse effects of p-PRSs on T-tau start to occur at age 75 for tau pathology and axon 

development pathways and at age 80 for endocytosis and the overall PRS. A reduced set of 

Wisconsin ADRC participants who have complete data in all PRS/p-PRSs were used to compare 

the performance of each PRS/p-PRS (supplementary table 3). When APOE is included, the 

variance explained by a single PRS is about 3% for Aβ42, 7% for Aβ42/40, 1% for P-tau, and less 

than 1% for T-tau. The additional interaction between age and p-PRSs contributes to the added 

variance explained in Aβ42, Aβ42/40, T-tau, and P-tau by about 1%, 2%, 2%, and 1.5%, 

respectively. When APOE is excluded, p-PRSs and age–PRS interaction under all pathways 

contributed substantially less variance, as shown using Aβ42 and Aβ42/40 ratio, which is 
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consistent with the WRAP findings. For tau-related outcomes, when APOE is excluded, the 

performance of p-PRSs/PRS and the interaction between p-PRSs/PRS and age under most 

pathways (except for endocytosis) deteriorated.  

 

Discussion 

In the present study, we updated findings from Darst et al. and investigated the potential of 

pathway-specific PRSs in predicting rate of change in cognitive function and biomarkers of beta-

amyloid deposition, neurodegeneration, and tau pathology among asymptomatic individuals in the 

Wisconsin Registry for Alzheimer’s Prevention[16]. With five additional years of data collection, 

GWAS summary statistics with a larger sample size, our comprehensive variant-pathway mapping 

method, and the inclusion of an age-interaction effect, we found p-PRSs and the overall PRS can 

predict preclinical changes in cognition and biomarkers, regardless of the inclusion of APOE. The 

effects of p-PRSs/PRS on rate of change in cognition, beta-amyloid, and tau outcomes are 

dependent on age and appear earlier in the lifespan when APOE is included in these risk scores 

compared to when APOE is excluded. Consistent with Darst et al., APOE appears to drive much 

of the strength of the p-PRSs for APP metabolism, cholesterol metabolism, endocytosis, tau 

pathology, and the overall PRS on rate of change in cognition and beta-amyloid outcomes when 

APOE is included in these risk scores. However, we did not observe a similar APOE-driven effect 

trend when applying p-PRSs/PRS to predicting tau outcomes.  

Results are mixed for current p-PRS studies on LOAD disease risk, cognitive deterioration, and 

biomarker variation. This is partially due to the discrepancy in the sample characteristics across 

different studies and outcomes being investigated, but also due to the methodology of attributing 
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specific genetic variants to its corresponding biological pathway. Most existing studies on p-PRSs 

have been based entirely on limited or even single-review papers and bioinformatic databases to 

map a specific genetic variant to a neurobiological pathway. However, the genetic functions of a 

specific variant have not been consistently defined across the literature, and the functional 

annotation of genes might differ across various databases being referred. This creates uncertainties 

in the accuracy of constructing p-PRSs and creates the possibility that the same pathway various 

studies explored might not be comparable and a specific pathway might not comprehensively 

reflect the underlying biological mechanism that it intends to represent. A recent study on p-PRSs 

proposed a novel approach to construct p-PRSs by including a multiplicative factor that represents 

the degree of involvement of a given genetic variant in the preselected pathways in calculating p-

PRSs to allow for uncertainty in gene and pathway assignment[18]. Even though this approach 

overcomes some limitations that the traditional p-PRSs studies may encounter when constructing 

p-PRSs, the accuracy of the p-PRSs under this approach (overweight or underweight of a particular 

variant) and to what extent the resulting p-PRSs reflect the underlying biological mechanism are 

still unknown. In our study, we combined the merits of these two approaches and proposed a 

conservative but comprehensive variant-pathway mapping method via only matching variants and 

corresponding pathways for which we have good confidence of an “actually existing” biological 

relationship, after widely referring to the literature published within recent years. 

Late on-set Alzheimer’s disease is an age-dependent brain disorder. Although genetics play a large 

role in the development and expression of LOAD, the complex relationships in the etiology 

between age, APOE, and non-APOE p-PRSs/PRS are not generally considered. Our study shows 

the risk of p-PRSs/PRS on rate of change in cognition, beta-amyloid, and tau are age dependent in 

both WRAP and the Wisconsin ADRC, regardless of including APOE. However, the adverse 
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effects of p-PRSs/PRS appear earlier in the lifespan when APOE is included in these risk scores 

compared to when APOE is excluded, with the exception of tau outcomes. In addition, including 

the interaction between p-PRSs/PRS and age in the model led to the model explaining additional 

variance. Our findings are consistent with a recent study that leveraged ADNI and UKBB samples 

and concluded both APOE and PRS predicted AD risk and presented age-dependent effects, but 

the effects of APOE were stronger in younger groups (age <80)[39]. Zimmerman et al. examined 

the age-dependent genetic effect of APOE and PRS in UKBB. In support of our findings, they 

reported that an AD PRS modified the association between age and cognition, that APOE ε4 allele 

carriers experienced earlier cognitive decline than non-carriers did, and that models using the PRS 

that excluded APOE ε4 had attenuated and later modification of age associations compared to 

when APOE was included in the PRS[40]. Our study also demonstrated a pattern in the timing of 

the earliest detectable genetic effect on rate of change in beta-amyloid (age ~55), tau (age ~65), 

and cognition (age ~65-70) that aligns with findings from Hanseeuw et al.[41] This pattern also 

explained that the reason for observing significant associations between p-PRSs/PRS and beta-

amyloid outcomes in Darst et al., but not for tau and cognition outcomes is that beta-amyloid 

accumulation occurs at a younger age than variation in tau and cognition, and the sample leveraged 

in Darst et al. was too young to detect polygenic effects on tau and cognition. 

Pathway-specific PRS could also predict earlier changes in AD-related outcomes than the overall 

PRS could, especially for beta-amyloid outcomes and when APOE is excluded from the risk score. 

Our results demonstrate when APOE is excluded, p-PRSs for APP and cholesterol pathway can 

predict changes in Aβ42, which is about 15 years earlier than the overall PRS, and this finding was 

replicated in the Wisconsin ADRC. Even though p-PRSs for APP and cholesterol metabolism 

pathways also show potential for predicting earlier changes in Aβ42/40 ratio compared to the 
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overall PRS, only the finding for the cholesterol metabolism pathway was replicated in the 

Wisconsin ADRC. Our results also show p-PRSs under certain pathways can predict adverse 

change in tau and cognition outcomes earlier than the overall PRS in WRAP can, but these findings 

were not fully replicated in the Wisconsin ADRC, which may warrant further investigation as 

longitudinal data focusing on the preclinical stage of AD with a larger sample size become 

available.  

One finding – that the tau pathology PRS is not predictive of tau outcomes after the exclusion of 

APOE in WRAP, but is predictive of both P-tau and T-tau in the Wisconsin ADRC - may require 

further investigation once we have a larger sample size and longer follow-up time. There are two 

possible explanations for the discrepancies in the effect of the tau pathology PRS between WRAP 

and the Wisconsin ADRC. First, the genes known to be related to the tau pathology pathway may 

not be well established and may not fully reflect the biological pathway of tau since only three 

SNPs in addition to APOE were included in the tau pathology pathway and all these SNPs 

overlapped with the SNPs included in the other disease-related pathways (Supplemental Figure 1). 

Second, the AHC sample that was extracted from the Wisconsin ADRC includes a sample of older 

healthy controls (enrollment age >= 65) and tau-levels are higher in the older age groups[42].  

The present study has limitations. First, although we tend to match genetic variants and biological 

pathways for which we have good confidence of an “actually existing” variant-pathway 

relationship, our variant-pathway mapping method is conservative and may not comprehensively 

reflect the genetic role in a specific disease pathway. Our results’ accuracy is subject to the 

knowledge of biological function of genes and pathways at the time of performing this study. It 

would be crucial to modify the variant-pathway mapping as additional knowledge becomes 

available. Second, we only considered the significant variants as identified from the most recent 
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IGAP case-control GWAS-meta-analyses as the weight to construct pathway-specific PRSs; 

however, a larger panel of SNPs from the recent genome-wide association study by proxy 

(GWAX) and a combined study of GWAS and GWAX may provide additional insights into the 

variant-pathway mapping[43,44]. This was not considered in the current study. Third, results from 

the AHC sample extracted from the Wisconsin ADRC are not absolutely comparable with the 

WRAP findings because the AHC sample was constructed based on two separate cohorts with 

different characteristics (e.g., age).. Additional replication analyses may be carried out once the 

data for an older IMPACT cohort (more like WRAP) become available.  

In conclusion, in addition to APOE, the pathway-specific PRSs can predict age dependent changes 

in beta-amyloid, tau, and cognition. Once validated, they could be used to identify individuals with 

an elevated genetic risk of accumulating beta-amyloid and tau, long before the onset of clinical 

symptoms. This information could be useful for selection of high risk participants for clinical trials 

and, as effective therapeutic targets further develop, pPRSs could be used to determine an 

individual’s risk for accumulating amyloid and the predicted age of onset so that resources could 

be used effectively in screening individuals for amyloid accumulation with more expensive and 

invasive, but accurate tests. This idea is being explored in other diseases, such as breast cancer. 
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Data, tables, and figures 

Table 1. Participant Characteristics for WRAP  

Variable Full sample (N=1,175) Sample with CSF (N=197) 

Baseline Age 54.16 (6.53) 61.98 (6.64) 

Education (years) 15.81 (2.24) 16.16 (2.14) 

Gender (male)  353 (30%) 69 (35%) 

Family history of AD 858 (73%) 142 (72%) 

Max visits   

1 41 (4%) 70 (36%) 

2 85 (7%) 42 (21%) 

3 182 (15%) 60 (30%) 

4 369 (31%) 23 (12%) 

5 498 (42%) 2 (1%) 

APOE genotypes   

e2/e2 4 (0.3%) 0 (0) 

e2/e3 96 (8%) 21 (11%) 

e3/e3 619 (53%) 107 (54%) 

e2/e4 39 (3%) 6 (3%) 

e3/e4 369 (31%) 56 (28%) 

e4/e4 43 (4%) 6 (3%) 

CSF Aβ42 (pg/mL) N/A 899.31 (391.24) 

CSF Aβ42/40 N/A 0.06 (0.02) 

CSF T-tau (pg/mL) N/A 208.82 (69.89) 

CSF P-tau (pg/mL) N/A 18.34 (6.71) 

Mean (SD); n (%) 

  



 41 

Table 2. Participant characteristics for the Wisconsin ADRC  

 Wisconsin ADRC AHC 

Variable PACC3-TMT (N=427) CSF Biomarker (N=259) 

Baseline Age 59.95 (8.26) 60.53 (8.08) 

Education (years) 16.35 (2.46) 16.20 (2.39) 

Gender (male) 149 (35%) 80 (31%) 

Family history of AD 299 (70%) 192 (74%) 

Max visits 
  

1 31 (7%) 203 (78%) 

2 56 (13%) 34 (13%) 

3 60 (14%) 6 (2%) 

4 34 (8%) 11 (4%) 

5 246 (58%) 3 (1%) 

6 
 

1 (0.4%) 

7 
 

1 (0.4%) 

APOE genotype 
  

e2/e2 1 (0.2%) 1 (0.4%) 

e2/e3 49 (11%) 30 (12%) 

e3/e3 219 (51%) 132 (51%) 

e2/e4 14 (3%) 7 (3%) 

e3/e4 124 (29%) 76 (29%) 

e4/e4 20 (5%) 13 (5%) 

CSF Aβ42 (pg/mL) N/A 957.40 (381.79) 

CSF Aβ42/40 N/A 0.07 (0.01) 

CSF T-tau (pg/mL) N/A 194.47 (73.58) 

CSF P-tau (pg/mL) N/A 17.00 (6.91) 

Mean (SD); n (%) 
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Supplementary table 1. Partial R-squared for each model in WRAP with cognitive outcomes. Based on a reduced subset of WRAP 

participants who had all PRSs 

 APP Immune Cholesterol Endocytosis Tau Axon APOE Overall 

Outcome PRS Interaction PRS Interaction PRS Interaction PRS Interaction PRS Interaction PRS Interaction APOE Score Interaction PRS Interaction 

APOE included 

Delayed Recall 0.002 0.009 / / 0.002 0.009 0.001 0.010 0.001 0.008 / / 0.001 0.008 0.001 0.009 

Executive Function 0.001 0.007 / / 0.001 0.007 0.000 0.008 0.000 0.007 / / 0.001 0.006 0.000 0.007 

Immediate Learning 0.002 0.011 / / 0.002 0.010 0.001 0.011 0.001 0.010 / / 0.002 0.010 0.001 0.010 

PACC3 0.002 0.010 / / 0.002 0.010 0.002 0.011 0.001 0.010 / / 0.002 0.010 0.001 0.011 

APOE excluded 

Delayed Recall 0.000 0.002 0.000 0.000 0.001 0.001 0.000 0.005 0.000 0.001 0.001 0.000 / / 0.000 0.001 

Executive Function 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.005 0.000 0.002 0.000 0.000 / / 0.000 0.002 

Immediate Learning 0.000 0.001 0.000 0.001 0.001 0.000 0.000 0.002 0.000 0.000 0.001 0.000 / / 0.000 0.001 

PACC3 0.000 0.001 0.000 0.001 0.001 0.000 0.000 0.004 0.000 0.001 0.001 0.001 / / 0.000 0.003 

 

Bolded value explains the most percentage of variance in outcome for single PRS; Underscored value explains the most percentage of variance in 

outcome for interaction terms. 

APP metabolism pathway: CLU, SOR1, ABCA7, PICALM, ADAM10, APOE 

Cholesterol metabolism pathway: CLU, SORL1, ABCA7, APOE 

Endocytosis pathway: SORL1, ABCA7, PICALM, BIN1, CD2AP, PTK2B, FERMT2, SLC24A4, APOE 

Tau pathway: BIN1, FERMT2, CASS4, APOE 

Immune response: CLU, ABCA7, CR1, INPP5D, HLA-DRB1, TREM2, EPHA1, MS4A6A, CD33, MEF2C 

Axonal development: EPHA1, FERMT2, CASS4, SPI1, NME8 
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Supplementary table 2. Partial R-squared for each model in WRAP with biomarker outcome. Based on a reduced subset of WRAP 

participants who had all PRSs 

Outcome 
APP Immune Cholesterol Endocytosis Tau Axon APOE Overall 

PRS Interaction PRS Interaction PRS Interaction PRS Interaction PRS Interaction PRS Interaction APOE Score Interaction PRS Interaction 

APOE included 

Aβ42 0.039 0.035 / / 0.041 0.035 0.036 0.032 0.035 0.029 / / 0.039 0.031 0.029 0.037 

Aβ42/40 0.079 0.024 / / 0.078 0.022 0.073 0.018 0.066 0.016 / / 0.071 0.019 0.072 0.022 

P TAU 0.009 0.020 / / 0.008 0.016 0.008 0.019 0.006 0.011 / / 0.005 0.012 0.010 0.021 

T_TAU 0.009 0.017 / / 0.007 0.014 0.007 0.018 0.005 0.013 / / 0.005 0.012 0.009 0.021 

APOE excluded 

Aβ42 0.001 0.007 0.000 0.01 0.004 0.006 0.000 0.003 0.000 0.000 0.000 0.000 / / 0.000 0.010 

Aβ42/40 0.013 0.011 0.01 0.007 0.015 0.006 0.005 0.001 0.000 0.002 0.001 0.001 / / 0.008 0.007 

P_TAU 0.013 0.036 0.003 0.017 0.010 0.014 0.006 0.019 0.001 0.004 0.002 0.001 / / 0.008 0.022 

T_TAU 0.012 0.027 0.003 0.015 0.008 0.009 0.004 0.017 0.000 0.005 0.002 0.001 / / 0.006 0.021 

 

Bolded value explains the most percentage of variance in outcome for single PRS; Underscored value explains the most percentage of variance in 
outcome for interaction terms. 

APP metabolism pathway: CLU, SOR1, ABCA7, PICALM, ADAM10, APOE 

Cholesterol metabolism pathway: CLU, SORL1, ABCA7, APOE 

Endocytosis pathway: SORL1, ABCA7, PICALM, BIN1, CD2AP, PTK2B, FERMT2, SLC24A4, APOE 

Tau pathway: BIN1, FERMT2, CASS4, APOE 

Immune response: CLU, ABCA7, CR1, INPP5D, HLA-DRB1, TREM2, EPHA1, MS4A6A, CD33, MEF2C 

Axonal development: EPHA1, FERMT2, CASS4, SPI1, NME8 

  



 44 

Supplementary table 3. Partial R-squared for each model in the Wisconsin ADRC with biomarker outcome and cognitive outcome. 

Based on a reduced subset of Wisconsin ADRC participants who had all PRSs 

Outcome 

APP Immune Cholesterol Endocytosis Tau Axon APOE Overall 

PRS Interaction PRS Interaction PRS Interaction PRS Interaction PRS Interaction PRS Interaction Score Interaction PRS Interaction 

APOE included 

PACC3_TMT 0.001 0.003 / / 0.001 0.003 0.001 0.004 0.001 0.004 / / 0.001 0.003 0.000 0.003 

Aβ42 0.031 0.010 / / 0.033 0.010 0.031 0.004 0.024 0.003 / / 0.027 0.004 0.028 0.010 

Aβ42/40 0.075 0.023 / / 0.079 0.023 0.066 0.022 0.066 0.021 / / 0.071 0.019 0.065 0.026 

P_TAU 0.009 0.020 / / 0.010 0.022 0.007 0.023 0.010 0.022 / / 0.010 0.020 0.010 0.027 

T_TAU 0.004 0.015 / / 0.004 0.017 0.003 0.016 0.005 0.016 / / 0.005 0.016 0.004 0.019 

APOE excluded 

PACC3_TMT 0.000 0.005 0.002 0.001 0.000 0.007 0.000 0.003 0.000 0.003 0.002 0.001 / / 0.002 0.001 

Aβ42 0.005 0.007 0.000 0.002 0.009 0.010 0.003 0.000 0.002 0.001 0.000 0.001 / / 0.000 0.000 

Aβ42/40 0.001 0.001 0.000 0.005 0.006 0.007 0.000 0.000 0.002 0.002 0.001 0.001 / / 0.000 0.002 

P_TAU 0.001 0.010 0.002 0.007 0.000 0.000 0.002 0.029 0.000 0.030 0.002 0.017 / / 0.000 0.016 

T_TAU 0.004 0.010 0.000 0.006 0.001 0.000 0.005 0.035 0.000 0.029 0.001 0.013 / / 0.001 0.017 

 

Bolded value explains the most percentage of variance in outcome for single PRS; Underscored value explains the most percentage of variance in 
outcome for interaction terms. 

APP metabolism pathway: CLU, SOR1, ABCA7, PICALM, APOE 

Cholesterol metabolism pathway: CLU, SORL1, ABCA7, APOE 

Endocytosis pathway: SORL1, ABCA7, PICALM, BIN1, CD2AP, PTK2B, FERMT2, SLC24A4, APOE 

Tau pathway: BIN1, FERMT2, CASS4, APOE 

Immune response: CLU, ABCA7, CR1, INPP5D, HLA-DRB1, TREM2, EPHA1, MS4A6A, CD33, MEF2C 

Axonal development: EPHA1, FERMT2, CASS4, SPI1, NME
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WRAP main analysis figures 

 

Figure 1 presents the effects of p-PRSs/PRS on immediate learning (Figure 1a), delayed recall (Figure 1b), executive function (Figure 1c), and PACC3 (Figure 1d) at various age points 

in WRAP with 95% confidence intervals. Within each figure, the left panel depicts the effects of p-PRSs/PRS, excluding APOE score, and the results of p-PRSs/PRS including APOE 

score are shown in the right panel. APOE is not theoretically affecting immune response and axonal development pathways, so the effects of p-PRSs/PRS of these two pathways are 

only shown in the left panel. All association analyses are performed using the linear mixed effect model and adjusted for within-individual and within-family correlation. In addition to p-

PRSs/PRS, age (cubic), and their interactions, additional covariates include gender, education years, practice effect, and the first five genetic principal components of ancestry.



 46 

 

Figure 2 presents the effects of p-PRSs/PRS on beta-amyloid 42 (Figure 2a), beta-amyloid 42/40 ratio (Figure 2b), phosphorylated tau (Figure 2c), and total tau (Figure 2d) at various 

age points in WRAP with 95% confidence interval. Within each figure, the left panel depicts the effects of p-PRSs/PRS, excluding APOE score, and the results of p-PRSs/PRS including 

APOE score are shown in the right panel. APOE is not theoretically affecting immune response and axonal development pathways, so the effects of p-PRSs/PRS of these two pathways 

are only shown in the left panel. All association analyses are performed using the linear mixed effect model and adjusted for within-individual and within-family correlation. Spaghetti 

plots determine the functional form of age for all biomarker analyses. In addition to p-PRSs/PRS, age, and their interactions, additional covariates include gender, education years, and 

the first five genetic principal components of ancestry. 

 



 47 

Supplementary Figures 

Supplementary figure 1. Venn diagram of the gene-pathway mapping 
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Supplementary Figure 2 presents the effects of p-PRSs/PRS on the PACC3-TMT score at various age points in the AHC sample extracted from the Wisconsin ADRC with a 95% 

confidence interval. Within each figure, the left panel depicts the effects of p-PRSs/PRS, excluding APOE score, and the results of p-PRSs/PRS including APOE score are shown in the 

right panel. APOE is not theoretically affecting immune response and axonal development pathways, so the effects of p-PRSs/PRS of these two pathways are only shown in the left 

panel. All association analyses are performed using the linear mixed effect model and adjusted for within-individual. In addition to p-PRSs/PRS, age (cubic), and their interactions, 

additional covariates include gender, education years, and practice effect.  
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Supplementary Figure 3 presents the effects of p-PRSs/PRS on beta-amyloid 42 (Figure 3a), beta-amyloid 42/40 ratio (Figure 3b), phosphorylated tau (Figure 3c), and total tau (Figure 

3d) at various age points in the AHC sample extracted from the Wisconsin ADRC with a 95% confidence interval. Within each figure, the left panel depicts the effects of p-PRSs/PRS, 

excluding APOE score, and the results of p-PRSs/PRS including APOE score are shown in the right panel. APOE is not theoretically affecting immune response and axonal development 

pathways, so the effects of p-PRSs/PRS of these two pathways are only shown in the left panel. All association analyses are performed using the linear mixed effect model and adjusted 

for within-individual correlation. The functional form of age for all biomarker analyses is determined by spaghetti plots. In addition to p-PRSs/PRS, age, and their interactions, additional 

covariates include gender, and education years. 

 


