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Abstract1 

Background: Sphingomyelin (SM) levels have been associated with Alzheimer's disease (AD), but the 

association direction has been inconsistent and research on cerebrospinal fluid (CSF) SMs has been 

limited by sample size, breadth of SMs examined, and diversity of biomarkers available. 

Objective: Here, we seek to build on our understanding of the role of SM metabolites in AD by studying 

a broad range of CSF SMs and biomarkers of AD, neurodegeneration, and neuroinflammation. 

 
Aβ: amyloid beta,  AD: Alzheimer’s disease, ADRC: Alzheimer’s Disease Research Center, α-synuclein: 

alpha synuclein, ANOVA: analysis of variance, CSF: cerebrospinal fluid, CU: cognitively unimpaired, DVR: 

distribution volume ratio, IL6: interleukin-6, LMM: linear mixed effect model, LP: lumbar puncture, MCI: 

mild cognitive impairment, MRI: magnetic resonance imaging, NfL: neurofilament light, NTK: Neuro Tool 

Kit, PET: positron emission tomography, PiB: Pittsburgh compound B, p-tau: phosphorylated tau, p-

tau/Aβ: p-tau to amyloid beta 42 ratio, QC: quality control, ROI: region of interest, SM: sphingomyelin, 

sTREM2: soluble triggering receptor found on myeloid cells 2, WRAP: Wisconsin Registry for Alzheimer’s 

Prevention, YKL40: chitinase-3-like protein 1 



Methods: Leveraging two longitudinal AD cohorts with metabolome-wide CSF metabolomics data (n = 

502), we analyzed the relationship between the levels of 12 CSF SMs, and AD diagnosis and biomarkers 

of pathology, neurodegeneration, and neuroinflammation using logistic, linear, and linear mixed effects 

models. 

Results: No SMs were significantly associated with AD diagnosis, mild cognitive impairment, or amyloid 

biomarkers. Phosphorylated tau, neurofilament light, α-synuclein, neurogranin, soluble triggering 

receptor expressed on myeloid cells 2, and chitinase-3-like-protein 1 were each significantly, positively 

associated with at least 5 of the SMs. 

Conclusion: The associations between SMs and biomarkers of neurodegeneration and 

neuroinflammation, but not biomarkers of amyloid or diagnosis of AD, point to SMs as potential 

biomarkers for neurodegeneration and neuroinflammation that may not be AD-specific. 
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1. Background 

In the US, Alzheimer’s disease (AD) is the sixth most common cause of death, and it was estimated to 

affect five million Americans in 2020, costing $305 billion.  Contributing to the enormous cost of AD are 

the major obstacles posed by the disease: its cause is not fully understood, the most accurate clinical 

diagnosis relies on postmortem examination, and, while some symptoms can be treated, there is no way 

to halt progression of the disease.2   In order to discover new therapeutic targets for AD, we must better 

understand the changes to the body caused by the disease.  One approach to better understanding 

these changes in AD is metabolomics.   



Metabolomics, a way of studying the byproducts of the body’s metabolic processes, grants a window 

into the metabolic state of the body.4  Metabolomics has proven useful in studying a variety of diseases, 

including identifying a mechanism of insulin resistance for type 2 diabetes, developing precision 

medicine approaches to treating cancer, and identifying altered metabolites and their mechanism of 

change in central nervous system-related disorders such as simian immunodeficiency virus (SIV).5–8  

Metabolomics has also been a valuable tool for studying AD, as it has helped to identify new biomarkers 

and mechanisms for the disease.9   

One of the findings from AD metabolomics studies has been the sphingolipid metabolic pathway’s 

association with AD.10  Sphingolipids are a family of membrane lipids that participate in diverse and 

quite fundamental cellular processes, such as cell division, differentiation, and death (ref: 

https://www.hindawi.com/journals/jl/2013/178910/). In mammals, sphingomyelins (SMs) are the most 

abundant molecule of the sphingolipid metabolic pathway (Supplemental Figure 1).11   Despite the 

identification of SMs as associated with AD, there is disagreement as to how they are associated with 

the disease: some studies show that SMs decrease in progression to AD, while others suggest that they 

increase.12,13  Previous research has been limited by sample size, breadth of SMs examined, and diversity 

of biomarkers available for AD, neurodegeneration, and neuroinflammation, which may have led to the 

lack of clarity in the role of SMs. 

Here, we build on our understanding of the role of SM metabolites in AD.  Leveraging two large, 

longitudinal cohorts with metabolome-wide cerebrospinal fluid (CSF) metabolomics, robust cognitive 

diagnoses, and a diversity of CSF biomarker and brain imaging measures, we analyzed the relationship 

between SMs, AD, and markers of neurodegeneration and neuroinflammation. The results shed light on 

the role of SMs in neurodegeneration and the biological information they best capture.  

2. Methods 



2.1. Study Cohorts 

Data were included from the Wisconsin Registry for Alzheimer’s Prevention (WRAP) and the Wisconsin 

Alzheimer’s Disease Research Center (ADRC) cohorts.14,15  These longitudinal studies of preclinical and 

clinical AD in middle to older aged adults include CSF metabolomics, AD diagnosis, and CSF biomarker 

data related to AD, neurodegeneration, and neuroinflammation.  All participants included in the current 

research had at least one lumbar puncture (LP); the CSF samples for WRAP and the Wisconsin ADRC 

were collected and analyzed by the same staff, following the same protocols.  Diagnosis of AD, mild 

cognitive impairment (MCI), or cognitively unimpaired (CU) was determined by consensus of a 

committee of dementia specialists.16  

2.2. CSF samples, biomarkers, and metabolomics   

The process through which CSF samples were acquired and biomarker concentrations were measured 

has been previously described.17 Briefly, CSF samples were collected in the morning after fasting.  Within 

30 minutes of collection, samples were mixed, centrifuged, aliquoted, and then stored at -80°C.  All CSF 

sample biomarker assays were performed at the Clinical Neurochemistry Laboratory, University of 

Gothenburg from March 2019 to January 2020.  All biomarker data were taken from the Roche Elecsys® 

Neuro Tool Kit (NTK), as previously described.17 Data outside of detectable limits were excluded from 

our analyses.   

For metabolomic analyses, CSF samples were shipped overnight to Metabolon, Inc. (Durham, NC), where 

samples were also kept frozen at -80°C until analysis.18 The untargeted metabolomics analysis was 

performed using Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-

MS/MS).  Chemical properties, metabolite identifiers, and pathway information were assigned to each 

metabolite. All metabolite data underwent a quality control (QC) process; of the 412 metabolites in the 

initial sample, 13 were removed for missing ≥ 50% of the samples. One reason that metabolites may be 

missing in ≥ 50% of samples is that they are outside of detectable limits. Nine metabolites were 



removed for low variance (interquartile range = 0).  Of the 1,172 CSF samples, one was removed for 

missing ≥ 40% of the metabolite values.  220 samples that were from a clinical trial were also removed.  

All metabolite values were log10 transformed.  After these QC steps, data were available on 390 

metabolites from 951 CSF samples taken from 609 individuals.   

2.3. Neuroimaging 

Detailed methods for radiotracer synthesis and positron emission tomography (PET) and magnetic 

resonance imaging (MRI) data acquisition, processing and quantification have been previously 

described.19  Briefly, anatomical MRI (T1-w and T2-w) underwent multispectral unified tissue class 

segmentation (SPM12, www.fil.ion.ucl.ac.uk/spm). Regions of interest (ROIs) for PET analysis were 

defined by applying the deformation field defined during segmentation to the MNI152-space Automated 

Anatomical Labeling atlas and restricting the subject-space ROIs to voxels with gray matter probabilities 

greater than 0.3.20 Reconstructed dynamic Pittsburgh compound B (PiB) PET data acquired from 0-70 

minutes post nominal 555 MBq [11C] PiB injection on a Siemens EXACT HR+ or Siemens Biograph Horizon 

PET/CT were isotopically smoothed, interframe realigned, dynamically denoised, and registered to T1-

weighted MRI.19 Amyloid burden was assessed by averaging distribution volume ratio (DVR) estimates 

across eight bilateral regions (Logan graphical analysis, cerebellum gray matter reference region, 

k2’=0.149 min-1; ROIs included: angular gyrus, anterior and posterior cingulate, medial orbital-frontal 

gyrus, precuneus, supramarginal gyrus, and middle and superior temporal gyri).21  

2.4. Data Integration 

When the data were combined for analysis, further data cleaning measures were performed.  CSF data 

were matched to diagnosis data from the nearest clinic visit within two years.  To remove potential 

correlation between related participants, only the oldest individual from each family group was selected 

(N = 32 individuals removed).  Two overlapping data sets were created to accommodate both cross-

sectional and longitudinal data.  Both data sets contained metabolomics and demographics information.  



The diagnosis data were used to identify associations between diagnosis and SMs using logistic 

regressions and PiB and SM’s using linear regressions.  SM-PiB analyses were performed using the 

diagnosis (cross-sectional) data set because there were not enough visits per individual to analyze it 

using the biomarker (longitudinal) data set.  This data set was limited to one visit per individual, 

resulting in a total of 493 samples, making these data cross-sectional.  The biomarker data set was used 

to identify associations between CSF biomarkers and metabolites.  It included all available visits for each 

individual to maximize sample size.  This data set contained a total sample size of 726 visits from 494 

individuals (Table 1).  Markers for AD included Aβ42/40 ratio, PiB PET, p-tau to Aβ ratio (p-tau/Aβ), and 

p-tau.22–24  The neurodegeneration biomarkers that we used were neurogranin, neurofilament light 

(NfL), and alpha-synuclein (α-synuclein).25–27   We also included biomarkers for neuroinflammation: 

interleukin-6 (IL6), chitinase-3-like protein 1 (YKL40), and soluble triggering receptor found on myeloid 

cells 2 (sTREM2).28–30  All biomarker data were checked for skewness and log10-transformed if the 

skewness was ≥ 2.31  The biomarkers that were log10-transformed were NfL, p-tau, p-tau/Aβ, and IL6. 

The data were divided into two main data sets for analysis. The first was the “Diagnosis” data set, which 

contained cross-sectional data with 493 individuals with just one visit each. The second was the 

“Biomarker” data set, which was comprised of 494 individuals (many of whom had multiple visits, range 

1-4) and a total of 726 unique visits. In both the Diagnosis and Biomarker data sets, most participants 

were cognitively unimpaired (CU), white, female, and amyloid- and tau-negative. The average ages in 

the Diagnosis and Biomarker data sets were 64.1 (SD = 8.9) and 63.4 (SD = 8.3) years, respectively (Table 

1). 

2.5. Data Analysis 

All analyses were performed using R (version 4.0.2) and the “Tidyverse” packages (version 1.3.0).32  

Logistic regressions and linear regressions were performed using the glm and lm functions from the 



“stats” package (version 3.6.2).33  The linear mixed effects regressions (LMMs) using the biomarker data 

set were performed using the lmer function from the “lme4” and “lmerTest” packages.34,35  All p-values 

from regression models were subject to a Bonferroni adjusted threshold of p  3.47×10-4 to determine 

significance (α = 0.05 / 12 metabolites / 12 total primary outcomes).  To assess the extent to which the 

SMs represented the same underlying signal, pairwise correlations were calculated between all 72 pairs 

of SMs. 

2.5.1. SM association with AD and MCI diagnoses 

Diagnoses of AD and MCI (both relative to CU) were regressed on each metabolite individually, 

controlling for sex and age as covariates.  Pseudo R-squared values to describe model fit were calculated 

for each regression using the R2 function from the “semEff” package (version 0.4.0).36 

2.5.2. SM association with biomarkers of AD, neurodegeneration, or neuroinflammation 

Linear regressions and LMMs were used to determine the association between SMs and markers of AD, 

neurodegeneration and neuroinflammation, adjusting for age and sex.  For the biomarkers with multiple 

visits per individual (Aβ42/40, p-tau/Aβ, p-tau, neurogranin, NfL, α-synuclein, IL6, YKL40, and sTREM2), a 

random intercept for the participant ID was also included.  Marginal R-squared values for these models 

were calculated using the r.squaredGLMM function from the “MuMIn” package (version 1.43.17) to 

assess model fit.37  

For amyloid PiB, which was only available for one visit per individual, associations with SMs were 

analyzed using a linear regression model with sex and age as covariates.  Adjusted R-squared values 

were calculated for these models, to assess model fit. 

2.5.3. Independent signals 



To determine whether the models for the top SM were significantly improved by adding any of the other 

SMs, we repeated each of the main analyses that included stearoyl SM while controlling each of the 

other metabolites.  We used an analysis of variance (ANOVA) test to assess whether the model with just 

one of the SMs was significantly different from the model where that SM and stearoyl SM were both 

included.  We used the anova function from the “stats” package (version 4.0.2) to do this analysis.33  To 

ensure that sample sizes were the same between the two groups, samples missing any of the values 

necessary for either regression were dropped.  We compared the R2 values calculated for each of the 

regressions before and after removing the necessary samples to perform this analysis to ensure that 

they were not drastically altered by these lost samples. 

2.5.4. Sensitivity Analyses 

APOE ε2/ε3/ε4 genotype was determined using competitive allele-specific PCR based KASP genotyping 

for rs429358 and rs7412.18  Because APOE ε4 count is strongly associated with AD and thus may feasibly  

influence our results, we performed a sensitivity analysis in which we controlled for the number of C 

alleles (0, 1, or 2) at the rs429358 SNP, which effectively quantifies the number of ε4 alleles.38  Only 

participants whose self-reported ancestry was “White” were retained for this analysis because of 

previously reported heterogeneity in effect of the APOE ε4 allele by race.39  We added APOE ε4 count as 

a covariate for these analyses. 

Some studies of SMs in plasma have suggested that the direction of association of SMs and AD differ 

based on sex.40–42  To determine whether there are sex specific differences in associations with SMs in 

CSF, the SM-AD and SM-biomarker regression analyses were repeated with stratification by sex 

(Supplemental Table 1).   

To understand whether the association between SMs and biomarkers of AD, neurodegeneration, and 

neuroinflammation change early in AD, we performed the SM-AD and SM-biomarker regressions 

stratified by amyloid and tau status, in which the main SM-biomarker regressions were performed for  



individuals who were amyloid-positive and tau-positive (A+T+), amyloid-positive and tau-negative (A+T-

), and amyloid-negative and tau-negative (A-T-) separately (Supplemental Table 2).43  Amyloid-positive 

individuals were defined as those with Aβ42/40 values below 0.046 pg/mL, and tau-positive individuals 

were defined as those with p-tau values above 0.038 pg/mL.17   

 

Each of the SM-AD and SM-biomarker regressions were repeated as in the main set of regressions with 

the noted change for each sensitivity analysis. The regression results were subject to the same 

Bonferroni-corrected significance threshold of p = 3.47×10-4 used in the main analyses and the p-values 

and β effect sizes of regressions with significant results were compared to the results of the main set of 

analyses.   

3. Results 

3.1. Pairwise correlations 

The pairwise correlations between the metabolites showed that the metabolites were all closely 

correlated with one another (Figure 1).  The correlation coefficients were all between 0.46 and 0.89; 

behenoyl SM (d18:1/22:0, d16:1/24:1) and stearoyl SM (d18:1/18:0) were the least correlated of all of 

the metabolite pairs (Supplemental Table 3).     

3.2. SM associations with AD 

Of the SMs analyzed, none showed a significant association with either AD or MCI diagnosis relative to 

cognitively healthy controls (Supplemental Table 4).  Though statistically insignificant, there was a trend 

towards higher SM levels in AD versus CU (Figure 2A). 

3.3. SM associations with biomarkers of AD, neurodegeneration, and neuroinflammation 



The associations between the SMs and PiB and the classic CSF biomarkers of AD (Aβ42/40, p-tau/Aβ, 

and p-tau) were substantially different between measures of amyloid and tau. None of the 12 

metabolites were statistically significantly associated with any of the amyloid-related biomarkers 

(Aβ42/40, PET PiB amyloid burden, and p-tau/Aβ) after multiple testing correction (Table 2).  The lack of 

clear association could be seen as well in the scatterplots for these outcomes plotted against the 

metabolite levels, where there were large clusters of data points with no clear pattern (Figure 2B).  

However, the case with the SM-p-tau associations was different; 12 SMs were nominally significantly 

associated with CSF p-tau, and 6 of those associations remained significant after Bonferroni correction.  

All of these associations showed a positive direction of association. The metabolite most strongly 

associated with p-tau was stearoyl sphingomyelin (d18:1/18:0), where P = 1.83 x 10-23. Likewise, the 

scatterplots of stearoyl SM and p-tau reflected this positive association (Figure 2B).  

SMs were clearly associated with all of the biomarkers of neurodegeneration.  For all three biomarkers 

(neurogranin, NfL, α-synuclein), at least 11 of the 12 SMs were nominally significantly associated with 

each biomarker with a positive direction of effect (Table 3).  This positive association is visible in the 

scatterplots of each outcome plotted against stearoyl SM (d18:1/18:0), the most significant metabolite, 

where there is a clear association and a consistent, positive trend (see Figure 2C showing the results for 

stearoyl SM as an example).    

The associations between the 12 SMs and biomarkers for neuroinflammation (YKL40, sTREM2, IL6) 

showed less consistent results than the associations with the biomarkers of neurodegeneration.  Of the 

SM-IL6 associations, only three were nominally significant (Table 4 and Figure 2D).  The association 

between stearoyl sphingomyelin (d18:1/18:0) and IL6 was the most significant (P = 0.0057).  Also, unlike 

all of the other associations, most of the SMs were negatively associated with IL6.  In contrast, 8 of the 

12 SMs were nominally positively associated with YKL40; 5 of these associations remained significant 

after Bonferroni correction.  The most significant of the associations involving YKL40 was that with 



stearoyl sphingomyelin (d18:1/18:0) (P = 1.41 x 10.-18).  Finally, all 12 SMs were nominally significantly 

associated with sTREM2; 9 remained significant after Bonferroni correction.  As with YKL40, the 

association was in the positive direction, with stearoyl sphingomyelin (d18:1/18:0) having the strongest 

association (P = 3.15 x 10-28).  

Behenoyl SM (d18:1/22:0) yielded no significant associations after Bonferroni correction with any of our 

biomarkers, while stearoyl SM (d18:1/18:0) had the strongest significant association with all biomarkers.  

Palmitoyl SM (d18:1/16:0), SM (d18:1/14:0, d16:1/16:0), SM (d18:1/18:1, d18:2/18:0), SM (d18:2/16:0, 

d18:1/16:1), and stearoyl SM (d18:1/18:0) were significantly associated with the same seven of the ten 

biomarkers (p-tau, NfL, α-synuclein, neurogranin, sTREM2, IL6, and YKL40) after Bonferroni correction. 

3.4. Independent signals 

ANOVA tests were performed to determine whether the models were significantly improved by adding 

an additional SM metabolite to the model with the most significant metabolite, stearoyl SM 

(Supplemental Table 5).  Six models with p-tau as the outcome were significantly improved by the 

addition of another metabolite predictor. Only one metabolite significantly improved the model for NfL, 

while there were six metabolites that significantly improved the model for α-synuclein and seven that 

significantly improved it for neurogranin.  Three metabolites significantly improved the models for 

sTREM2, one significantly improved the models for IL6, and five metabolites significantly improved the 

model for YKL40. 

3.5. Sensitivity Analyses 

To ensure that the results of these analyses were not driven by the APOE genotype, we repeated each of 

the SM-AD and SM-biomarker regressions, adding APOE ε4 count as a covariate.  The results of the 

sensitivity analysis with the APOE ε4 covariate were compared with the main analysis results and were 



not substantially different in either the significance of associations or direction of effect (Supplemental 

Table 6. 

To determine whether there were sex-specific differences in the association between SMs and the 

outcomes, we stratified the data sets by sex and repeated each of the SM-AD and SM-biomarker 

regressions.  The results of this sensitivity analysis were not meaningfully different from the main set of 

analyses (Supplemental Table 7).  The SM-diagnosis and SM-amyloid associations remained insignificant 

after Bonferroni correction in both groups.  The effect size was generally larger in females than in males 

for P-tau, neurogranin, and YKL40, while it was larger in males for NfL, α-synuclein, and sTREM2.   

In the amyloid and tau (AT)-stratified regressions there were no significant SM-diagnosis associations 

(Supplemental Table 8).  There were notably more significant associations and larger effect sizes 

identified in the A+T+ group than the A+T- group despite a larger sample size in the latter.     

4. Discussion 

Our study first explored whether CSF SMs were associated with the diagnosis of AD or MCI in our 

cohorts. Previous studies on this topic have found significant associations but differing directionality.12,13  

We found that none of the SMs were significantly associated with diagnosis of AD or MCI.  This result 

may be because SMs lack specificity to AD and MCI diagnosis.  The contrast between our findings and 

those of previous studies may be explained by population differences or differing diagnostic criteria.   

We found that amyloid biomarkers (Aβ42/40, PiB, and p-tau/Aβ) were not significantly associated with 

any of our SMs.  This finding is consistent with previous research in the WRAP cohort that found no 

association between any of the CSF metabolites and measures of Aβ.18  It is, however, contradictory to 

findings of a previous study that examined the association of total SMs with Aβ in CSF, but this may be 

because of the preclinical nature of the cohort used in our study; a majority of participants were A-T- 

(see Table 1).44  However, some SMs were significantly associated with p-tau and several of the 



biomarkers for neurodegeneration and neuroinflammation.  Five SMs (stearoyl SM (d18:1/18:0), SM 

(d18:2/16:0, d18:1/16:1), SM (d18:1/18:1, d18:2/18:0), SM (d18:1/14:0, d16:1/16:0), and palmitoyl SM 

(d18:1/16:0)) were significantly positively associated with p-tau and each of the biomarkers for 

neurodegeneration that we examined: NfL, p-tau, α-synuclein, and neurogranin.  The same five SMs 

were significantly, positively associated with YKL40 and sTREM2, but not with IL6.  The associations of 

SMs with all of the outcomes we analyzed remained almost completely the same when we controlled 

for APOE ε4 genotype, indicating these results were not likely to be driven by APOE genotype.  This 

information seems to indicate that, as neurodegeneration and neuroinflammation are increasing, so too 

are our SMs, and these five SMs are potential biomarkers for both of those conditions.  The association 

with markers of neurodegeneration and neuroinflammation may explain why studies seem to find 

associations with SMs in later stages of AD, while we did not observe associations between SMs and 

amyloid biomarkers.12,45,46  SMs may only begin changing as neurodegeneration or neuroinflammation 

occur and neurons begin to die, but not earlier, when amyloid is first beginning to accumulate.   

Of the twelve metabolites we analyzed, stearoyl SM (d18:1/18:0) had the strongest associations with 

most of our biomarkers.  This particular metabolite has been previously identified as having a significant, 

positive association with AD pathology along with SM (18:1/18:1).46  Stearoyl SM (d18:1/18:0), along 

with palmitoyl SM (d18:1/16:0), was elevated in plasma of preeclamptic mothers in a previous study, 

thought to be a result of lipid rafts’ (microdomains of the cell membrane) exposure to low oxygen 

levels.47  This finding may grant insight into potential mechanisms for the association of CSF SMs with 

neurodegeneration: as neurons die, by hypoxia or some other mechanism, lipid rafts release their 

contents, including SMs, into the CSF. 11,13  

The sex-stratified analyses were not meaningfully different from the unstratified analyses.  While there 

were more significant SM-outcome associations in the female than male group, these differences may 

simply reflect differences in power between the groups as a result of differing sample sizes by 



stratification.  Similarly, the AT-stratified analyses did not yield results that were meaningfully different 

from the unstratified analyses; this may be a reflection of the small sample sizes in each of the AT-

stratified groups, especially the A-T+ and A+T+.  More research with larger sample sizes will be necessary 

to establish the associations between SMs and various stages of AD. 

Our pairwise correlations indicate that all of the CSF SMs we analyzed were correlated, with potential 

subgroups among the SMs based on chain length.  The nested linear models with our most strongly 

associated metabolite, stearoyl SM (d18:1/18:0), support the correlated nature of the SMs.   

This study has certain limitations that must be taken into consideration when interpreting its results.  

While we were able to produce one of the largest sample sizes of AD and MCI individuals used to study 

CSF SMs, our samples of individuals with AD and MCI are still relatively small (N = 89) compared to our 

cognitively normal controls (Table 1), which may have limited our ability to assess diagnosis-related 

outcomes.  We also lack diversity in samples; all individuals included in this study were self-reported 

white, limiting the generalizability of this study to other populations.  As sample sizes for these and 

other cohorts grow and diversify, we will be better able to investigate the role of SMs across a greater 

range of populations.  We also were limited in the types and quantity of sphingolipids that we examined.  

Ceramides, particularly, are a type of sphingolipid that has been implicated in AD among other diseases, 

but we were not able to assess their role here.48  Nine of the twelve SMs we analyzed were designated 

as tier 2 compounds by Metabolon.  These compounds have a structure that has been confirmed by 

literature review, but they are not necessarily confirmed by the reference standard.49  There are also 

other species of SMs that we were unable to examine because they were not present in our data, 

though from this study, it did seem that the SMs were highly correlated with each other.  Finally, there 

are likely additional potential confounding variables that we did not control for, which could influence 

the results of the association analyses.   



5. Conclusion 

In this study, we examined the relationship between 12 SMs, AD diagnoses and ten different markers of 

AD, neurodegeneration, and neuroinflammation, providing a comprehensive investigation of the role of 

SMs and AD pathology. While we found no association between SMs that we analyzed and AD or MCI 

diagnoses, we did find strong positive associations between the SMs and p-tau, NfL, sTREM2, 

neurogranin, α-synuclein, and YKL40.   We hypothesized that SMs are biomarkers of neurodegeneration 

and neuroinflammation.  There is still much to be learned about SMs in neurodegeneration: testing and 

proving a mechanism for their role in neurodegeneration, understanding how SM levels differ across 

neurodegenerative diseases, and characterizing them in diverse cohorts with larger numbers of AD 

individuals will grant greater insights into the role of these metabolites in AD.   
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Table 1. Baseline characteristics of individuals. 

Characteristic 

Diagnosis data set  

(Cross-sectional) 

(n = 493 individuals) 

Biomarker data set individuals 

(n = 494 individuals) 

Biomarker data set visits  

(Longitudinal) 

(n = 726 visits) 

Diagnosis (n, %) 

  

 

AD 44 (8.9%) 43 (8.7%) 44 (6.1%) 

MCI 40 (8.1%) 42 (8.5%) 45 (6.2%) 



CU 409 (82.9%) 409 (82.8%) 637 (87.7%) 

Primary Race (n, %)  

White 472 (95.7%) 473 (95.7%) 693 (95.5%) 

Black or African American 16 (3.3%) 16 (3.2%) 22 (3.03%) 

American Indian or Alaska Native 3 (0.6%) 3 (0.6%) 4 (0.6%) 

Asian 1 (0.2%) 1 (0.2%) 3 (0.4%) 

Other 1 (0.2%) 1 (0.2%) 4 (0.6%) 

Sex (n, %) 

 

  

Male 191 (38.7%) 191 (38.7%) 273 (39.4%) 

Female 302 (61.3%) 303 (61.3%) 453 (65.4%) 

Amyloid and tau status (n, %)    

A-T- 319 (64.7%) 343 (69.4%) 500 (68.9%) 

A-T+ 61 (12.4%) 64 (13.0%) 85 (11.7%) 

A+T+ 85 (17.2%) 85 (17.2%) 102 (14.0%) 

Age in years (mean, SD) 64.1 (8.9) 63.1 (8.9) 63.4 (8.3) 

PET PiB, n = 179 (mean, SD) 172 (9.4) N/A N/A 

For demographics information in the sex- and amyloid-stratified groups, see Supplemental Tables 1 and 

2.  All individuals with PET PiB measurements were present in the diagnosis data set.  

Abbreviations: AD, Alzheimer’s disease; MCI, mild cognitive impairment; CU, cognitively unimpaired; 

CSF, cerebrospinal fluid; PiB, Pittsburgh Compound B; SD, standard deviation.  



 

Figure 1. Pairwise correlations of SMs. A heatplot showing the correlation between each metabolite 

pair.  Darker colors indicate stronger correlations (closer to one), while lighter colors indicate weaker 

correlations (closer to 0).  The lowest correlation coefficient was 0.47 and the highest was 0.89. 



 

Figure 2. Plots of the associations between biomarkers and diagnosis data and stearoyl SM 

(d18:1/18:0). 

Only the results from stearoyl SM (d18:1/18:0) are displayed because it was consistently the most 

significantly associated SM and all other SMs are correlated with stearoyl SM (correlation coefficient of 

0.46-1.0). A) Boxplots showing stearoyl SM (d18:1/18:0) levels for individuals with CU, MCI, and AD 

diagnoses. A small but statistically insignificant increase in metabolite level by AD progression can be 

seen moving from the CU to AD group.  None of the SM-Diagnosis regressions had statistically significant 

results.  B) Scatterplots with each of the four AD specific outcomes on the x-axis of its respective plot 

and stearoyl SM (d18:1/18:0) on the y-axis of each of the plots.  Stearoyl SM was not significantly 

associated with the measures of amyloid, but was significantly, positively associated with p-tau after 

Bonferroni correction. C) Scatterplots of each of the three neurodegeneration biomarkers (x-axis) 

plotted against stearoyl SM (d18:1/18:0) (y-axis).  Stearoyl SM was significantly, positively associated 



with NfL, neurogranin, and α-synuclein after Bonferroni correction.  D) Scatterplots of each of the three 

neuroinflammation biomarkers (x-axis) plotted against stearoyl SM (d18:1/18:0) (y-axis).  Stearoyl SM 

was significantly, positively associated with YKL40 and sTREM2 and significantly, negatively associated 

with IL6 after Bonferroni correction.  A-D: The units of stearoyl SM (d18:1/18:0) are standardized by 

log10-transformation as laid out in the methods section of this paper. B-D: Best fit lines constructed using 

linear regression models with 95% confidence intervals are drawn onto each of the scatterplots.  

Table 2. Associations between SMs and AD biomarkers. 

  PiB Aβ42/40 p-tau/Aβ (pg/mL) 

Metabolite β P R2 β P R2 β P 

behenoyl SM (d18:1/22:0) 0.02 0.85 0.09 -3.54E-04 0.86 0.13 0.02 0.54 

palmitoyl dihydro-SM (d18:0/16:0) 0.07 0.60 0.09 -3.00E-04 0.93 0.13 0.01 0.84 

palmitoyl SM (d18:1/16:0) -0.19 0.23 0.10 -1.87E-03 0.68 0.14 0.03 0.64 

SM (d18:1/14:0, d16:1/16:0) -0.05 0.70 0.09 -1.41E-03 0.68 0.14 0.03 0.58 

SM (d18:1/18:1, d18:2/18:0) -0.15 0.38 0.10 -3.22E-03 0.50 0.14 0.07 0.30 

SM (d18:1/20:0, d16:1/22:0) 0.01 0.93 0.09 -2.60E-03 0.38 0.14 0.05 0.26 

SM (d18:1/20:1, d18:2/20:0) 0.08 0.56 0.09 -2.97E-03 0.35 0.13 0.06 0.16 

SM (d18:1/22:1, d18:2/22:0, 

d16:1/24:1) 0.15 0.19 0.10 -3.62E-03 0.13 0.14 0.05 0.18 

SM (d18:1/24:1, d18:2/24:0) 0.05 0.69 0.09 -6.82E-04 0.79 0.14 0.01 0.73 

SM (d18:2/16:0, d18:1/16:1) -0.08 0.57 0.10 -4.76E-03 0.17 0.14 0.09 0.07 

SM (d18:2/24:1, d18:1/24:2) 0.06 0.59 0.09 -4.02E-03 0.13 0.14 0.05 0.15 

stearoyl SM (d18:1/18:0) -0.22 0.18 0.10 -1.04E-03 0.84 0.14 0.05 0.50 

SM: sphingomyelin; PiB: positron emission tomography Pittsburgh compound B; Aβ42/40: amyloid-beta 

42/40 ratio; p-tau/Aβ: phosphorylated-tau181 to amyloid-beta 42 ratio; p-tau: phosphorylated-tau; β: 



change in the outcome with a one unit increase of the standardized metabolite level; P: P-value of the 

corresponding regression; R2: adjusted R2 for PiB, marginal R2 for others; bolded values indicate 

significant results at threshold p<3.47×10-4. 

Table 3. Associations between SMs and neurodegeneration biomarkers. 

  NfL (pg/mL) α-synuclein (pg/mL) Neurogranin (pg/mL) 

Metabolite β P  R2 β P R2 β P 

behenoyl SM (d18:1/22:0) 0.06 1.23E-03 0.46 31.79 8.96E-04 0.09 46.86 0.08 

palmitoyl dihydro-SM (d18:0/16:0) 0.15 2.14E-06 0.46 87.32 1.16E-07 0.11 148.66 0.01 

palmitoyl SM (d18:1/16:0) 0.37 1.57E-18 0.52 254.75 1.72E-35 0.26 608.66 1.34E-15 

SM (d18:1/14:0, d16:1/16:0) 0.16 8.83E-08 0.47 142.70 4.19E-18 0.16 336.80 1.74E-09 

SM (d18:1/18:1, d18:2/18:0) 0.37 3.99E-17 0.51 247.38 3.30E-32 0.25 626.89 2.13E-15 

SM (d18:1/20:0, d16:1/22:0) 0.17 2.34E-09 0.48 103.61 1.02E-12 0.12 207.71 8.00E-06 

SM (d18:1/20:1, d18:2/20:0) 0.12 6.43E-05 0.45 64.18 3.29E-05 0.10 179.55 7.21E-04 

SM (d18:1/22:1, d18:2/22:0, 

d16:1/24:1) 0.10 5.20E-06 0.46 50.48 1.34E-05 0.09 110.05 3.23E-03 

SM (d18:1/24:1, d18:2/24:0) 0.09 1.30E-04 0.47 49.82 3.79E-05 0.09 81.38 0.04 

SM (d18:2/16:0, d18:1/16:1) 0.22 5.16E-12 0.49 146.47 1.36E-19 0.17 337.93 1.39E-09 

SM (d18:2/24:1, d18:1/24:2) 0.14 1.02E-08 0.48 75.29 2.36E-09 0.10 111.55 0.01 

stearoyl SM (d18:1/18:0) 0.45 1.94E-21 0.53 325.23 1.25E-51 0.36 994.55 2.82E-28 

SM: sphingomyelin; NfL: neurofilament light; β: change in the outcome with a one unit increase of the 

standardized metabolite level; P: P-value of the corresponding regression; R2: marginal R2 for the 

corresponding regression; bolded values indicate significant results at threshold p < 3.47×10-4. 

Table 4. Associations between SMs and neuroinflammation biomarkers. 

  sTREM2 (ng/mL) IL6 (pg/mL) YKL40 (ng/mL) 

Metabolite β P R2 β P R2 β P 



behenoyl SM (d18:1/22:0) 0.47 0.03 0.11 -0.02 0.48 0.03 6.87 0.05 

palmitoyl dihydro-SM (d18:0/16:0) 1.64 5.15E-05 0.12 0.02 0.75 0.03 19.80 3.67E-03 

palmitoyl SM (d18:1/16:0) 4.55 1.06E-16 0.17 -0.10 0.12 0.03 63.27 2.92E-11 

SM (d18:1/14:0, d16:1/16:0) 1.91 6.67E-07 0.12 -0.07 0.18 0.03 27.02 5.14E-05 

SM (d18:1/18:1, d18:2/18:0) 4.30 2.70E-14 0.17 -0.17 7.56E-03 0.04 59.56 2.40E-09 

SM (d18:1/20:0, d16:1/22:0) 1.48 7.69E-06 0.12 -0.06 0.22 0.03 15.09 0.01 

SM (d18:1/20:1, d18:2/20:0) 0.88 0.01 0.12 -0.01 0.78 0.02 13.51 0.03 

SM (d18:1/22:1, d18:2/22:0, 

d16:1/24:1) 1.03 9.70E-05 0.11 -0.03 0.40 0.03 9.82 0.03 

SM (d18:1/24:1, d18:2/24:0) 0.92 7.96E-04 0.12 -0.03 0.44 0.03 5.99 0.19 

SM (d18:2/16:0, d18:1/16:1) 2.26 1.12E-08 0.13 -0.14 8.31E-03 0.04 31.62 3.08E-06 

SM (d18:2/24:1, d18:1/24:2) 1.28 1.27E-05 0.12 -0.05 0.23 0.03 11.71 0.02 

stearoyl SM (d18:1/18:0) 6.99 3.15E-28 0.24 -0.18 5.77E-03 0.04 105.64 1.41E-18 

sTREM2: soluble triggering receptor found on myeloid cells 2; IL6: interleukin-6; YKL40: chitinase-3-like 

protein 1; β: change in the outcome with a one unit increase of the standardized metabolite level; P: P-

value of the corresponding regression; R2: marginal R2 for the corresponding regression; bolded values 

indicate significant results at threshold p<3.47×10-4. 
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