9 research outputs found

    Heating of ions by low-frequency Alfv\'{e}n waves in partially ionized plasmas

    Full text link
    In the solar atmosphere, the chromospheric and coronal plasmas are much hotter than the visible photosphere. The heating of the solar atmosphere, including the partially ionized chromosphere and corona, remains largely unknown. In this paper we demonstrate that the ions can be substantially heated by Alfv\'{e}n waves with very low frequencies in partially ionized low beta plasmas. This differs from other Alfv\'{e}n wave related heating mechanisms such as ion-neutral collisional damping of Alfv\'{e}n waves and heating described by previous work on resonant Alfv\'{e}n wave heating. In this paper, we find that the non-resonant Alfv\'{e}n wave heating is less efficient in partially ionized plasmas than when there are no ion-neutral collisions, and the heating efficiency depends on the ratio of the ion-neutral collision frequency to the ion gyrofrequency.Comment: Published as Letter

    Observations of Extreme ICME Ram Pressure Compressing Mercury's Dayside Magnetosphere to the Surface

    Full text link
    Mercury's magnetosphere is known to be affected by enhanced ram pressures and magnetic fields inside interplanetary coronal mass ejections (ICMEs). Here we report detailed observations of an ICME compressing Mercury's dayside magnetosphere to the surface. A fast CME launched from the Sun on November 29 2013 impacted first MESSENGER, which was orbiting Mercury, on November 30 and later STEREO-A near 1 AU on December 1. Following the ICME impact, MESSENGER remained in the solar wind as the spacecraft traveled inwards and northwards towards Mercury's surface until it reached and passed its closest approach to the planet (at 371 km altitude) without crossing into the magnetosphere. The magnetospheric crossing finally occurred 1 minute before reaching the planet's nightside at 400 km altitude and 84∘^\circN latitude, indicating the lack of dayside magnetosphere on this orbit. In addition, the peak magnetic field measured by MESSENGER at this time was 40% above the values measured in the orbits just prior to and after the ICME, a consequence of the magnetospheric compression. Using both a proxy method at Mercury and measurements at STEREO-A, we show that the extremely high ram pressure associated with this ICME was more than high enough to collapse Mercury's weak magnetosphere. As a consequence, the ICME plasma likely interacted with Mercury's surface, evidenced by enhanced sodium ions in the exosphere. The collapse of Mercury's dayside magnetosphere has important implications for the habitability of close-in exoplanets around M dwarf stars, as such events may significantly contribute to planetary atmospheric loss in these systems

    The Saturn Ring Skimmer Mission Concept: The next step to explore Saturn's rings, atmosphere, interior, and inner magnetosphere

    Get PDF
    The innovative Saturn Ring Skimmer mission concept enables a wide range of investigations that address fundamental questions about Saturn and its rings, as well as giant planets and astrophysical disk systems in general. This mission would provide new insights into the dynamical processes that operate in astrophysical disk systems by observing individual particles in Saturn's rings for the first time. The Ring Skimmer would also constrain the origin, history, and fate of Saturn's rings by determining their compositional evolution and material transport rates. In addition, the Ring Skimmer would reveal how the rings, magnetosphere, and planet operate as an inter-connected system by making direct measurements of the ring's atmosphere, Saturn's inner magnetosphere and the material owing from the rings into the planet. At the same time, this mission would clarify the dynamical processes operating in the planet's visible atmosphere and deep interior by making extensive high-resolution observations of cloud features and repeated measurements of the planet's extremely dynamic gravitational field. Given the scientific potential of this basic mission concept, we advocate that it be studied in depth as a potential option for the New Frontiers program.Comment: White paper submitted to the Planetary Science and Astrobiology Decadal Survey (submission #420

    The Saturn Ring Skimmer Mission Concept: The next step to explore Saturn's rings, atmosphere, interior and inner magnetosphere

    Get PDF
    The innovative Saturn Ring Skimmer mission concept enables a wide range of investigations that address fundamental questions about Saturn and its rings, as well as giant planets and astrophysical disk systems in general. This mission would provide new insights into the dynamical processes that operate in astrophysical disk systems by observing individual particles in Saturn's rings for the first time. The Ring Skimmer would also constrain the origin, history, and fate of Saturn's rings by determining their compositional evolution and material transport rates. In addition, the Ring Skimmer would reveal how the rings, magnetosphere, and planet operate as an inter-connected system by making direct measurements of the ring's atmosphere, Saturn's inner magnetosphere and the material owing from the rings into the planet. At the same time, this mission would clarify the dynamical processes operating in the planet's visible atmosphere and deep interior by making extensive high-resolution observations of cloud features and repeated measurements of the planet's extremely dynamic gravitational field. Given the scientific potential of this basic mission concept, we advocate that it be studied in depth as a potential option for the New Frontiers program

    New Frontiers-class Uranus Orbiter: Exploring the feasibility of achieving multidisciplinary science with a mid-scale mission

    Get PDF
    n/

    Neptune Odyssey: A Flagship Concept for the Exploration of the Neptune–Triton System

    Get PDF
    The Neptune Odyssey mission concept is a Flagship-class orbiter and atmospheric probe to the Neptune-Triton system. This bold mission of exploration would orbit an ice-giant planet to study the planet, its rings, small satellites, space environment, and the planet-sized moon Triton. Triton is a captured dwarf planet from the Kuiper Belt, twin of Pluto, and likely ocean world. Odyssey addresses Neptune system-level science, with equal priorities placed on Neptune, its rings, moons, space environment, and Triton. Between Uranus and Neptune, the latter is unique in providing simultaneous access to both an ice giant and a Kuiper Belt dwarf planet. The spacecraft - in a class equivalent to the NASA/ESA/ASI Cassini spacecraft - would launch by 2031 on a Space Launch System or equivalent launch vehicle and utilize a Jupiter gravity assist for a 12 yr cruise to Neptune and a 4 yr prime orbital mission; alternatively a launch after 2031 would have a 16 yr direct-to-Neptune cruise phase. Our solution provides annual launch opportunities and allows for an easy upgrade to the shorter (12 yr) cruise. Odyssey would orbit Neptune retrograde (prograde with respect to Triton), using the moon's gravity to shape the orbital tour and allow coverage of Triton, Neptune, and the space environment. The atmospheric entry probe would descend in ~37 minutes to the 10 bar pressure level in Neptune's atmosphere just before Odyssey's orbit-insertion engine burn. Odyssey's mission would end by conducting a Cassini-like "Grand Finale,"passing inside the rings and ultimately taking a final great plunge into Neptune's atmosphere

    From Ionospheric Electrodyamics at Mars to Mass and Momentum Loading at Saturn: Quantifying the Impact of Neutral-Plasma Interactions using Plasma Dynamic Simulations

    No full text
    Planetary environments provide compelling natural laboratories for exploring and quantifying the various expressions of plasma-neutral interactions in magnetospheric systems. Quantifying these interactions requires consideration of momentum and energy exchange between neutral and plasma populations, tracking of plasma sources and losses, and propagation of these effects into the generation of currents and fields. We have incorporated these interactions into a multifluid plasma dynamic modeling infrastructure in order to examine their influence in two very different planetary environments: Mars and Saturn. For Mars we consider the coupling of the neutral atmosphere to the ionospheric plasma throughout the atmospheric column and in the presence of remanent crustal magnetic fields. At altitudes where the collision frequency between charged species and neutrals becomes larger than the gyrofrequecy, these charged particles become demagnetized and follow the neutral flow. In the atmospheric dynamo region (100−250 km altitude), ions depart from the gyropath due to collisions with moving neutral particles (i.e., winds), while electron motion remains governed by electromagnetic drift. In our simulations, we track this differential motion of the ions and electrons and calculate the associated electric currents and induced perturbation field generated in the dynamo region. We also examine how the overall electromagnetic changes may ultimately alter the behavior of the local ionosphere beyond the dynamo region. At Saturn, we incorporated the same types of physical interactions into a global scale magnetospheric simulation in order to capture the interaction of the extended neutral cloud with Saturn’s rapidly rotating magnetosphere. We included an empirical representation of Saturn\u27s neutral cloud and again modified the multifluid equations to include the collisions necessary to quantify the globally distributed mass- and momentum-loading on the system. Collision cross-sections between ions, electrons, and neutrals were calculated as functions of closure velocity and energy at each grid point and time step, enabling us to simulate the spatially and temporally varying plasma-neutral interactions. We use this updated multifluid simulation to investigate the dynamics of Saturn\u27s magnetosphere, focusing specifically on the production of new plasma, the resulting radial outflow, interchange events, and corotation lag profiles

    Statistical study of ICME effects on Mercury\u27s magnetospheric boundaries and northern cusp region from MESSENGER

    No full text
    This paper presents a systematic investigation of the large-scale processes in Mercury\u27s magnetosphere during interplanetary coronal mass ejections (ICMEs) using observations from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission. We study the motion of the bow shock and magnetopause boundaries, quantify the magnetospheric compression, and characterize the size, extent, and plasma pressure of the northern cusp region and the plasma precipitation to the surface. During ICMEs, the magnetopause was substantially compressed, as the subsolar standoff distance from the center of the planet was reduced by ∼15% compared with the value during nominal solar wind conditions, and the magnetopause reached the surface of the planet ∼30% of the time. On the other hand, the bow shock under ICME conditions was located farther from the planet than for nominal solar wind conditions. The cusp was observed to extend ∼10° farther equatorward and 2 h wider in local time. In addition, the average plasma pressure in the cusp was more than double that determined under nominal conditions. For the most extreme cases, the particle precipitation to the surface was an order of magnitude higher than on average. The solar wind ram pressure and the Alfvén Mach number are found to be the dominant factors affecting these changes in the magnetosphere, with the interplanetary magnetic field (IMF) direction and the IMF magnetic pressure playing a small but likely nonnegligible role
    corecore