6 research outputs found

    Patterning Polymer Thin Films: Lithographically Induced Self Assembly and Spinodal Dewetting

    Get PDF
    In an age in which the microchip is ubiquitous, the rewards for novel methods of microfabrification are great, and the vast possibilities of nanotechnology lie just a little ahead. Various methods of microlithography offer differing benefits, and even as older techniques such as optical lithography are being refined beyond what were once considered their upper limits of resolution, new techniques show great promise for going even further once they reach their technological maturity. Recent developments in optical lithography may allow it to break the 100-nm limit even without resorting to x-rays

    Hydrohalite Salt-albedo Feedback Could Cool M-dwarf Planets

    Full text link
    A possible surface type that may form in the environments of M-dwarf planets is sodium chloride dihydrate, or "hydrohalite" (NaCl â‹…\cdot 2H2_2O), which can precipitate in bare sea ice at low temperatures. Unlike salt-free water ice, hydrohalite is highly reflective in the near-infrared, where M-dwarf stars emit strongly, making the effect of the interaction between hydrohalite and the M-dwarf SED necessary to quantify. We carried out the first exploration of the climatic effect of hydrohalite-induced salt-albedo feedback on extrasolar planets, using a three-dimensional global climate model. Under fixed CO2_2 conditions, rapidly-rotating habitable-zone M-dwarf planets receiving 65% or less of the modern solar constant from their host stars exhibit cooler temperatures when an albedo parameterization for hydrohalite is included in climate simulations, compared to simulations without such a parameterization. Differences in global mean surface temperature with and without this parameterization increase as the instellation is lowered, which may increase CO2_2 build-up requirements for habitable conditions on planets with active carbon cycles. Synchronously-rotating habitable-zone M-dwarf planets appear susceptible to salt-albedo feedback at higher levels of instellation (90% or less of the modern solar constant) than planets with Earth-like rotation periods, due to their cooler minimum day-side temperatures. These instellation levels where hydrohalite seems most relevant correspond to several recently-discovered potentially habitable M-dwarf planets, including Proxima Centauri b, TRAPPIST-1e, and LHS 1140b, making an albedo parameterization for hydrohalite of immediate importance in future climate simulations.Comment: 12 pages, 4 figures, 1 table, accepted for publication in the Astrophysical Journa

    The Astrobiology Primer v2.0

    Get PDF
    Astrobiology is the science that seeks to understand the story of life in our universe. Astrobiology includes investigation of the conditions that are necessary for life to emerge and flourish, the origin of life, the ways that life has evolved and adapted to the wide range of environmental conditions here on Earth, the search for life beyond Earth, the habitability of extraterrestrial environments, and consideration of the future of life here on Earth and elsewhere. It therefore requires knowledge of physics, chemistry, biology, and many more specialized scientific areas including astronomy, geology, planetary science, microbiology, atmospheric science, and oceanography. However, astrobiology is more than just a collection of different disciplines. In seeking to understand the full story of life in the Universe in a holistic way, astrobiology asks questions that transcend all these individual scientific subjects. Astrobiological research potentially has much broader consequences than simply scientific discovery, as it includes questions that have been of great interest to human beings for millennia (e.g., are we alone?) and raises issues that could affect the way the human race views and conducts itself as a species (e.g., what are our ethical responsibilities to any life discovered beyond Earth?)

    The Astrobiology Primer v2.0

    No full text
    corecore