107 research outputs found

    Radiation Hardness of Perovskite Solar Cells Based on Aluminum‐Doped Zinc Oxide Electrode Under Proton Irradiation

    Get PDF
    Due to their high specific power and potential to save both weight and stow volume, perovskite solar cells have gained increasing interest to be used for space applications. However, before they can be deployed into space, their resistance to ionizing radiations such as high‐energy protons must be demonstrated. In this report, we investigate the effect of 150 keV protons on the performance of perovskite solar cells based on aluminium‐doped zinc oxide (AZO) transparent conducting oxide (TCO). Record power conversion efficiency of 15% and 13.6% were obtained for cells based on AZO under AM1.5G and AM0 illumination, respectively. We demonstrate that perovskite solar cells can withstand proton irradiation up to 1013 protons.cm−2 without significant loss in efficiency. At this irradiation dose, Si or GaAs solar cells would be completely or severely degraded when exposed to 150 keV protons. From 1014 protons.cm−2, a decrease in short‐circuit current of the perovskite cells is observed, which is consistent with interfacial degradation due to deterioration of the Spiro‐OMeTAD HTL during proton irradiation. Using a combination of non‐destructive characterization techniques, results suggest that the structural and optical properties of perovskite remain intact up to high fluence levels. Although shallow trap states are induced by proton irradiation in perovskite bulk at low fluence levels, they can release charges efficiently and are not detrimental to the cell's performance. This work highlights the potential of perovskite solar cells based on AZO TCO to be used for space applications and give a deeper understanding of interfacial degradation due to proton irradiation

    A novel dimethylformamide (DMF) free bar-cast method to deposit organolead perovskite thin films with improved stability

    Get PDF
    We report a solvent-free approach to synthesizing organolead perovskites by using solid state reactions to coat perovskite crystals onto Al2O3 or TiO2 nanoparticles followed by addition of terpineol affording perovskite inks. We have bar cast these inks to produce photoactive perovskite thin films which are significantly more stable to humidity than solution-processed films. This new method also avoids the use of toxic DMF solvent

    Towards Equitable, Diverse, and Inclusive science collaborations: The Multimessenger Diversity Network

    Get PDF

    A time-independent search for neutrinos from galaxy clusters with IceCube

    Get PDF

    The Acoustic Module for the IceCube Upgrade

    Get PDF

    A Combined Fit of the Diffuse Neutrino Spectrum using IceCube Muon Tracks and Cascades

    Get PDF
    corecore