138 research outputs found

    Morphological and Receptorial Changes in the Epididymal Adipose Tissue of Rats Subjected to a Stressful Stimulus.

    Get PDF
    Obesity is nowadays related to other pathological conditions such as inflammation, insulin resistance, and diabetes, but little is known about the relationship between psychological stress and adipocytes. We decided to study the expression of the translocator protein (TSPO) 18-kDa, peroxisome proliferator-activated receptor-\u3b3 (PPAR-\u3b3), mitochondrial uncoupling protein-1 (UCP-1), and adipocyte morphology in the adipose tissue of rats subjected to stress conditions. In our model of stress, rats fasted for 24 h were placed in a restraint cage and then immersed vertically to the level of the xiphoid process in a water bath at 23 \ub0C for 7 h. After that period, we removed the epididymal adipose tissues for the subsequent analysis. The optical and electron microscopy revealed that adipocytes of control rats formed a continuous epithelial-like cell layer; on the contrary in the adipocytes of stressed rats some cells have merged together and the number of vessels formed seems to increase. Stressed adipocytes presented unilocular cells with numerous mitochondria with a morphology ranging between that of brown adipose tissue (BAT) and white adipose tissue (WAT). Interestingly, when we investigated the subcellular distribution of UCP-1 by immunogold electron microscopy, the adipose tissue of stressed rats was positive for UCP-1. From the immunoblot analysis with anti-PPAR-\u3b3 antibody, we observed an increased expression of PPAR-\u3b3 in the adipocytes of stressed group compared with control group (P < 0.05). Stress induced the expression of TSPO 18-kDa receptor (B(max) = 106.45 \ub1 5.87 fmol/mg proteins), which is undetectable by saturation-binding assay with [(3)H]PK 11195 in the control group

    Protective Effects of Borago officinalis (Borago) on Cold Restraint Stress-Induced Gastric Ulcers in Rats: A Pilot Study

    Get PDF
    Stress is a typical body's natural defense to a generic physical or psychic change. A specific linking mechanism between ulcer onset and psycho-physical stress prolonged exposure has been reported. We decided to investigate the possible effects of Borago officinalis L. (Borago) in preventing physical (stress)-induced gastric ulcers in a rat model. Eighty male Sprague-Dawley rats were randomly divided into 16 groups, pretreated with a control solution, omeprazole (20 mg/kg), Borago methanolic extract (25, 50, 100, 250, and 500 mg/kg), Borago organic extract (50, 100, 250, and 500 mg/kg), Borago aqueous extract (5, 10, 20, 30, and 40 mg/kg), and D(-)-2-Amino-5-phosphonovaleric acid (AP5) (25 mg/kg) and kept in stressful conditions such as water immersion and restraint-induced stress ulcers. The animals were sacrificed and their stomach scored for the severity and the number of gastric ulcers. Methanolic extract (500 mg/kg) significantly reduced both ulcer parameters (***p &lt; 0.001 and **p &lt; 0.01, respectively). Aqueous and organic extract significantly decreased severity score at 5 and 10 mg/kg (**p &lt; 0.01 and ***p &lt; 0.001, respectively), and at 250 and 500 mg/kg (***p &lt; 0.001), respectively, while gastric ulcers' resulted number significantly reduced only at 10 mg/kg (*p &lt; 0.05) and at 500 mg/kg (**p &lt; 0.01), respectively. On the other hand, aqueous extract significantly increased the mucosal gastric content of cAMP (*p &lt; 0.05) and NR2A and NR2B subunits (*p &lt; 0.05 and **p &lt; 0.01, respectively) at 5 mg/kg. Organic extract showed also a significant cytotoxic effect at 500 and 1,000 mg/kg with a 3T3 cell viability reduction of 43.6% (**p &lt; 0.01) and 92.1% (***p &lt; 0.001), respectively. Borago aqueous extract at 10 mg/kg could be considered as a potential protective agent against stress-induced ulcers, and it is reasonable to possibly ascribe such protective activity to a modulation of the NR2A and NR2B subunit expression

    Expression of Autophagic and Inflammatory Markers in Normal Mucosa of Individuals with Colorectal Adenomas: A Cross Sectional Study among Italian Outpatients Undergoing Colonoscopy

    Get PDF
    : Colorectal cancer (CRC) ranks among the three most common cancers in terms of both cancer incidence and cancer-related deaths in Western industrialized countries. Lifetime risk of colorectal cancer may reach 6% of the population living in developed countries. In the current era of personalized medicine, CRC is no longer considered as a single entity. In more recent years many studies have described the distinct differences in epidemiology, pathogenesis, genetic and epigenetic alterations, molecular pathways and outcome depending on the anatomical site. The aim of our study is to assess in a multidimensional model the association between metabolic status and inflammatory and autophagic changes in the normal colorectal mucosa classified as right-sided, left-sided and rectum, and the presence of adenomas. One hundred and sixteen patients undergoing colonoscopy were recruited and underwent a complete serum lipid profile, immunofluorescence analysis of colonic biopsies for MAPLC3 and myeloperoxidase expression, matched with clinical and anthropometric characteristics. Presence of adenomas correlated with cholesterol (total and LDL) levels, IL-6 levels, and MAPLC3 tissue expression, especially in the right colon. In conclusion, serum IL-6 amount and autophagic markers could be good predictors of the presence of colorectal adenomas

    The Point of View of Undergraduate Health Students on Interprofessional Collaboration: A Thematic Analysis

    Get PDF
    Interprofessional education (IPE) is essential to prepare future professionals for interprofessional collaboration (IPC). Learning together is essential for students because it is a way to understand the roles of other colleagues, improve their skills, knowledge, competencies, and attitudes to collaborate with the interprofessional teams. To explore how undergraduate students who attend IPE courses define IPC, a qualitative study using semistructured interviews followed by a thematic analysis was performed. Four main themes were identifed: IPC as a resource, requirements for IPC, emotions linked to IPC, and tutor\u2019s role to facilitate students\u2019 perception of IPC. Students considered IPE important to build IPC, where clinical placement tutors play a key role. The most important findings of the present study include the students\u2019 considerations about the importance of IPE when building their IPC definition and the key role played by the tutor during the placement in building IPC in clinical practic

    Neural crest derived niche of human dental pulp stem cells promotes peripheral nerve regeneration and remyelination in animal model of critical sized sciatic nerve injury

    Get PDF
    ABSTRACT Peripheral nerve injuries are a commonly encountered clinical problem and often result in long-term functional defects. The use of stem cells, easily accessible, capable of rapid expansion in culture as well as fully integrate into the host tissue and capable to differentiate in myelinating cells of the peripheral nervous system, represent an attractive therapeutic approach for the treatment of nerve injuries. Farther, stem cells sources sharing the same embryological origin of Schwann cells, might be considered a suitable tool. The aim of this study was to demonstrate the ability of a neuroectodermal sub-population of STRO-1+/c-Kit+/CD34+ hDPSCs (1, 2), most of which being positive for neural crest (P75NTR) and neural progenitor cells (nestin) markers, to differentiate into Schwann cells-like cells in vitro and to promote axonal regeneration in vivo. As a matter of fact, following culture in appropriate induction medium, STRO-1+/c-Kit+/CD34+ hDPSCs were able to commit towards Schwann cells express- ing P75NTR, GFAP and S100b. After transplantation in animal model of sciatic nerve defect, hDPSCs promoted axonal regeneration from proximal to distal stumps, providing guidance to newly formed myelinated nerve fibers, which led to functional recovery as measured by sustained gait improvement. Particularly, transplanted hDP- SCs engrafted into critical sized sciatic nerve defect, as revealed by the positive stain- ing against human nuclei, showed the expression of typical Schwann cells markers, S100b and GFAP. In conclusion this study demonstrates that STRO-1+/c-Kit+/CD34+ hDPSCs, associated to neural crest derivation, represent a promising source of stem cells for the treatment of demyelinating disorders and might provide a valid alternative tool for future clinical applications to achieve functional recovery after injury or peripheral neuropathies besides minimizing ethical issues

    Liquid flow in scaffold derived from natural source: experimental observations and biological outcome

    Get PDF
    This study investigates the biological effects on a 3D scaffold based on hydroxyapatite cultured with MC3T3 osteoblasts in response to flow-induced shear stress (FSS). The scaffold adopted here (B-HA) derives from the biomorphic transformation of natural wood and its peculiar channel geometry mimics the porous structure of the bone. From the point of view of fluid dynamics, B-HA can be considered a network of micro-channels, intrinsically offering the advantages of a microfluidic system. This work, for the first time, offers a description of the fluid dynamic properties of the B-HA scaffold, which are strongly connected to its morphology. These features are necessary to determine the FSS ranges to be applied during in vitro studies to get physiologically relevant conditions. The selected ranges of FSS promoted the elongation of the attached cells along the flow direction and early osteogenic cell differentiation. These data confirmed the ability of B-HA to promote the differentiation process along osteogenic lineage. Hence, such a bioactive and naturally derived scaffold can be considered as a promising tool for bone regeneration applications

    Fabrication and characterization of biomimetic hydroxyapatite thin films for bone implants by direct ablation of a biogenic source

    Get PDF
    Biomimetic bone apatite coatings were realized for the first time by the novel Ionized Jet Deposition technique. Bone coatings were deposited on titanium alloy substrates by pulsed electron ablation of deproteinized bovine bone shafts in order to resemble bone apatite as closely as possible. The composition, morphology and mechanical properties of the coatings were characterized by GI-XRD, FT-IR, SEM-EDS, AFM, contact angle measurements, micro-scratch and screw-insertion tests. Different post-treatment annealing conditions (from 350 °C to 425 °C) were investigated. Bone apatite coatings exhibited a nanostructured surface morphology and a composition closely resembling that of the deposition target (i.e. natural bone apatite), also regarding the presence of magnesium and sodium ions. Crystallinity and composition of the coatings were strongly influenced by annealing temperature and duration; in particular, upon annealing at 400 °C and above, a crystallinity similar to that of bone was achieved. Finally, adhesion to the titanium substrate and hydrophilicity were significantly enhanced upon annealing, all characteristics being known to have a strong positive impact on promoting host cells attachment, proliferation and differentiation

    Osteogenic Differentiation of hDPSCs on Biogenic Bone Apatite Thin Films

    Get PDF
    A previous study reported the structural characterization of biogenic apatite (BAp) thin films realized by a pulsed electron deposition system by ablation of deproteinized bovine bone. Thin films annealed at 400 degrees C exhibited composition and crystallinity degree very close to those of biogenic apatite; this affinity is crucial for obtaining faster osseointegration compared to conventional, thick hydroxyapatite (HA) coatings, for both orthopedics and dentistry. Here, we investigated the adhesion, proliferation, and osteogenic differentiation of human dental pulp stem cells (hDPCS) on as-deposited and heat-treated BAp and stoichiometric HA. First, we showed that heat-treated BAp films can significantly promote hDPSC adhesion and proliferation. Moreover, hDPSCs, while initially maintaining the typical fibroblast-like morphology and stemness surface markers, later started expressing osteogenic markers such as Runx-2 and OSX. Noteworthy, when cultured in an osteogenic medium on annealed BAp films, hDPSCs were also able to reach a more mature and terminal commitment, with respect to HA and as-deposited films. Our findings suggest that annealed BAp films not only preserve the typical biological properties of stemness of, hDPSCs but also improve their ability of osteogenic commitment

    Human dental pulp stem cells (hDPSCs): isolation, enrichment and comparative differentiation of two sub-populations

    Get PDF
    Human dental pulp represents a suitable alternative source of stem cells for the purpose of cell-based therapies in regenerative medicine, because it is relatively easy to obtain it, using low invasive procedures. This study characterized and compared two subpopulations of adult stem cells derived from human dental pulp (hDPSCs). Human DPSCs, formerly immune-selected for STRO-1 and c-Kit, were separated for negativity and positivity to CD34 expression respectively, and evaluated for cell proliferation, stemness maintenance, cell senescence and multipotency

    Use of a 3D floating sphere culture system to maintain the neural crest-related properties of human dental pulp stem cells

    Get PDF
    Human dental pulp is considered an interesting source of adult stem cells, due to the low-invasive isolation procedures, high content of stem cells and its peculiar embryological origin from neural crest. Based on our previous findings, a dental pulp stem cells sub-population, enriched for the expression of STRO-1, c-Kit, and CD34, showed a higher neural commitment. However, their biological properties were compromised when cells were cultured in adherent standard conditions. The aim of this study was to evaluate the ability of three dimensional floating spheres to preserve embryological and biological properties of this sub-population. In addition, the expression of the inwardly rectifying potassium channel Kir4.1, Fas and FasL was investigated in 3D-sphere derived hDPSCs. Our data showed that 3D sphere-derived hDPSCs maintained their fibroblast-like morphology, preserved stemness markers expression and proliferative capability. The expression of neural crest markers and Kir4.1 was observed in undifferentiated hDPSCs, furthermore this culture system also preserved hDPSCs differentiation potential. The expression of Fas and FasL was observed in undifferentiated hDPSCs derived from sphere culture and, noteworthy, FasL was maintained even after the neurogenic commitment was reached, with a significantly higher expression compared to osteogenic and myogenic commitments. These data demonstrate that 3D sphere culture provides a favorable micro-environment for neural crest-derived hDPSCs to preserve their biological properties
    • …
    corecore