2,223 research outputs found

    Non-Markovian Quantum Trajectories Versus Master Equations: Finite Temperature Heat Bath

    Full text link
    The interrelationship between the non-Markovian stochastic Schr\"odinger equations and the corresponding non-Markovian master equations is investigated in the finite temperature regimes. We show that the general finite temperature non-Markovian trajectories can be used to derive the corresponding non-Markovian master equations. A simple, yet important solvable example is the well-known damped harmonic oscillator model in which a harmonic oscillator is coupled to a finite temperature reservoir in the rotating wave approximation. The exact convolutionless master equation for the damped harmonic oscillator is obtained by averaging the quantum trajectories relying upon no assumption of coupling strength or time scale. The master equation derived in this way automatically preserves the positivity, Hermiticity and unity.Comment: 19 pages, typos corrected, references adde

    The Accuracy of Perturbative Master Equations

    Full text link
    We consider open quantum systems with dynamics described by master equations that have perturbative expansions in the system-environment interaction. We show that, contrary to intuition, full-time solutions of order-2n accuracy require an order-(2n+2) master equation. We give two examples of such inaccuracies in the solutions to an order-2n master equation: order-2n inaccuracies in the steady state of the system and order-2n positivity violations, and we show how these arise in a specific example for which exact solutions are available. This result has a wide-ranging impact on the validity of coupling (or friction) sensitive results derived from second-order convolutionless, Nakajima-Zwanzig, Redfield, and Born-Markov master equations.Comment: 6 pages, 0 figures; v2 updated references; v3 updated references, extension to full-time and nonlocal regime

    Asymmetric quantum dot in microcavity as a nonlinear optical element

    Get PDF
    We have investigated theoretically the interaction between individual quantum dot with broken inversion symmetry and electromagnetic field of a single-mode quantum microcavity. It is shown that in the strong coupling regime the system demonstrates nonlinear optical properties and can serve as emitter of the terahertz radiation at Rabi frequency of the system. Analytical results for simplest physical situations are obtained and numerical quantum approach for calculating emission spectrum is developed.Comment: Article is accepted to Phys. Rev. A (7 pages, 5 figures

    Predictability sieve, pointer states, and the classicality of quantum trajectories

    Full text link
    We study various measures of classicality of the states of open quantum systems subject to decoherence. Classical states are expected to be stable in spite of decoherence, and are thought to leave conspicuous imprints on the environment. Here these expected features of environment-induced superselection (einselection) are quantified using four different criteria: predictability sieve (which selects states that produce least entropy), purification time (which looks for states that are the easiest to find out from the imprint they leave on the environment), efficiency threshold (which finds states that can be deduced from measurements on a smallest fraction of the environment), and purity loss time (that looks for states for which it takes the longest to lose a set fraction of their initial purity). We show that when pointer states -- the most predictable states of an open quantum system selected by the predictability sieve -- are well defined, all four criteria agree that they are indeed the most classical states. We illustrate this with two examples: an underdamped harmonic oscillator, for which coherent states are unanimously chosen by all criteria, and a free particle undergoing quantum Brownian motion, for which most criteria select almost identical Gaussian states (although, in this case, predictability sieve does not select well defined pointer states.)Comment: 10 pages, 13 figure

    Matrix Product Density Operators: Simulation of finite-T and dissipative systems

    Get PDF
    We show how to simulate numerically both the evolution of 1D quantum systems under dissipation as well as in thermal equilibrium. The method applies to both finite and inhomogeneous systems and it is based on two ideas: (a) a representation for density operators which extends that of matrix product states to mixed states; (b) an algorithm to approximate the evolution (in real or imaginary time) of such states which is variational (and thus optimal) in nature.Comment: See also M. Zwolak et al. cond-mat/040644

    Spontaneous Collapse of Unstable Quantum Superposition State: A Single-Particle Model of Modified Quantum Dynamics

    Full text link
    We propose a modified dynamics of quantum mechanics, in which classical mechanics of a point mass derives intrinsically in a massive limit of a single-particle model. On the premise that a position basis plays a special role in wavefunction collapse, we deduce to formalize spontaneous localization of wavefunction on the analogy drawn from thermodynamics, in which a characteristic energy scale and a time scale are introduced to separate quantum and classical regimes.Comment: 2figs., contribution to Xth ICQO 200

    Prevalence, faecal shedding and genetic characterisation of Yersinia spp. in sheep across four states of Australia

    Get PDF
    Objectives To develop molecular tools for the investigation of the prevalence, species and faecal shedding of Yersinia in sheep. Methods A quantitative PCR (qPCR) targeting the β subunit of the Yersinia spp. RNA polymerase gene was developed and validated. The prevalence of pathogenic Y. enterocolitica was determined by screening for the virulent yst gene. These qPCR assays were used to determine Yersinia spp. prevalence and faecal shedding concentration from 3412 faecal samples collected from approximately 1189 lambs (100–180 lambs/flock) on eight farms across Australia. This was a longitudinal study, with sheep sampled on three occasions (weaning, post-weaning and pre-slaughter). A subset of up to five positive samples from each sampling on each farm (n = 111) was sequenced. Results Yersinia spp. (including both pathogenic and non-pathogenic species) were identified in all flocks, with 60.7% of lambs shedding Yersinia spp. on at least one sampling occasion. Point prevalence ranged from 4% to 91% across farms and sampling occasions. Median Yersinia spp. bacterial concentration was 1.1 × 106, 2.8 × 106 and 5.6 × 105 organisms/g faeces at weaning, post-weaning and pre-slaughter, respectively, across all farms. Pathogenic Y. enterocolitica was identified in all eight flocks sampled, with 14.8% of lambs shedding pathogenic Y. enterocolitica on at least one sampling occasion. Conclusion Yersinia spp. and pathogenic Y. enterocolitica in particular were commonly identified in a sample of Australian sheep flocks using molecular techniques. Further studies into associations between faecal shedding of pathogenic Yersinia spp. and sheep productivity or clinical disease may utilise qPCR in conjunction with other diagnostic tools
    corecore