4,483 research outputs found

    Atom detection in a two-mode optical cavity with intermediate coupling: Autocorrelation studies

    Full text link
    We use an optical cavity in the regime of intermediate coupling between atom and cavity mode to detect single moving atoms. Degenerate polarization modes allow excitation of the atoms in one mode and collection of spontaneous emission in the other, while keeping separate the two sources of light; we obtain a higher confidence and efficiency of detection by adding cavity-enhanced Faraday rotation. Both methods greatly benefit from coincidence detection of photons, attaining fidelities in excess of 99% in less than 1 microsecond. Detailed studies of the second-order intensity autocorrelation function of light from the signal mode reveal evidence of antibunched photon emissions and the dynamics of single-atom transits.Comment: 10 pages, 10 figures, to be published in Phys. Rev.

    From quantum feedback to probabilistic error correction: Manipulation of quantum beats in cavity QED

    Full text link
    It is shown how to implement quantum feedback and probabilistic error correction in an open quantum system consisting of a single atom, with ground- and excited-state Zeeman structure, in a driven two-mode optical cavity. The ground state superposition is manipulated and controlled through conditional measurements and external fields, which shield the coherence and correct quantum errors. Modeling of an experimentally realistic situation demonstrates the robustness of the proposal for realization in the laboratory

    Decoherence-free quantum-information processing using dipole-coupled qubits

    Get PDF
    We propose a quantum-information processor that consists of decoherence-free logical qubits encoded into arrays of dipole-coupled qubits. High-fidelity single-qubit operations are performed deterministically within a decoherence-free subsystem without leakage via global addressing of bichromatic laser fields. Two-qubit operations are realized locally with four physical qubits, and between separated logical qubits using linear optics. We show how to prepare cluster states using this method. We include all non-nearest-neighbor effects in our calculations, and we assume the qubits are not located in the Dicke limit. Although our proposal is general to any system of dipole-coupled qubits, throughout the paper we use nitrogen-vacancy (NV) centers in diamond as an experimental context for our theoretical results.Comment: 7 pages, 5 figure

    Multiple-time correlation functions for non-Markovian interaction: Beyond the Quantum Regression Theorem

    Full text link
    Multiple time correlation functions are found in the dynamical description of different phenomena. They encode and describe the fluctuations of the dynamical variables of a system. In this paper we formulate a theory of non-Markovian multiple-time correlation functions (MTCF) for a wide class of systems. We derive the dynamical equation of the {\it reduced propagator}, an object that evolve state vectors of the system conditioned to the dynamics of its environment, which is not necessarily at the vacuum state at the initial time. Such reduced propagator is the essential piece to obtain multiple-time correlation functions. An average over the different environmental histories of the reduced propagator permits us to obtain the evolution equations of the multiple-time correlation functions. We also study the evolution of MTCF within the weak coupling limit and it is shown that the multiple-time correlation function of some observables satisfy the Quantum Regression Theorem (QRT), whereas other correlations do not. We set the conditions under which the correlations satisfy the QRT. We illustrate the theory in two different cases; first, solving an exact model for which the MTCF are explicitly given, and second, presenting the results of a numerical integration for a system coupled with a dissipative environment through a non-diagonal interaction.Comment: Submitted (04 Jul 04

    Continuous quantum non-demolition measurement of Fock states of a nanoresonator using feedback-controlled circuit QED

    Get PDF
    We propose a scheme for the quantum non-demolition (QND) measurement of Fock states of a nanomechanical resonator via feedback control of a coupled circuit QED system. A Cooper pair box (CPB) is coupled to both the nanoresonator and microwave cavity. The CPB is read-out via homodyne detection on the cavity and feedback control is used to effect a non-dissipative measurement of the CPB. This realizes an indirect QND measurement of the nanoresonator via a second-order coupling of the CPB to the nanoresonator number operator. The phonon number of the Fock state may be determined by integrating the stochastic master equation derived, or by processing of the measurement signal.Comment: 5 pages, 3 figure

    Robust generation of entanglement in Bose-Einstein condensates by collective atomic recoil

    Get PDF
    We address the dynamics induced by collective atomic recoil in a Bose-Einstein condensate in presence of radiation losses and atomic decoherence. In particular, we focus on the linear regime of the lasing mechanism, and analyze the effects of losses and decoherence on the generation of entanglement. The dynamics is that of three bosons, two atomic modes interacting with a single-mode radiation field, coupled with a bath of oscillators. The resulting three-mode dissipative Master equation is solved analytically in terms of the Wigner function. We examine in details the two complementary limits of {\em high-Q cavity} and {\em bad-cavity}, the latter corresponding to the so-called superradiant regime, both in the quasi-classical and quantum regimes. We found that three-mode entanglement as well as two-mode atom-atom and atom-radiation entanglement is generally robust against losses and decoherence,thus making the present system a good candidate for the experimental observation of entanglement in condensate systems. In particular, steady-state entanglement may be obtained both between atoms with opposite momenta and between atoms and photons

    Conservative chaotic map as a model of quantum many-body environment

    Get PDF
    We study the dynamics of the entanglement between two qubits coupled to a common chaotic environment, described by the quantum kicked rotator model. We show that the kicked rotator, which is a single-particle deterministic dynamical system, can reproduce the effects of a pure dephasing many-body bath. Indeed, in the semiclassical limit the interaction with the kicked rotator can be described as a random phase-kick, so that decoherence is induced in the two-qubit system. We also show that our model can efficiently simulate non-Markovian environments.Comment: 8 pages, 4 figure

    Observation of ground-state quantum beats in atomic spontaneous emission

    Full text link
    We report ground-state quantum beats in spontaneous emission from a continuously driven atomic ensemble. Beats are visible only in an intensity autocorrelation and evidence spontaneously generated coherence in radiative decay. Our measurement realizes a quantum eraser where a first photon detection prepares a superposition and a second erases the "which-path" information in the intermediate state.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Letter
    corecore