7 research outputs found

    On generic rank and phylogenetic relationships of Dorycnopsis Boiss. (Leguminosae, Loteae)

    Get PDF
    Nuclear ribosomal ITS sequence data as well as morphological data show that Dorycnopsis gerardii (L.) Boiss. can not be placed in the genus Anthyllis L. The genus Dorycnopsis Boiss. includes two species, D. gerardii and D. abyssinica (A. Rich.) V.N. Tikhom. et D.D. Sokoloff (=Vermifrux abyssinica (A. Rich.) J.B. Gillett). Morphological similarity between Dorycnopsis gerardii and Anthyllis onobrychioides Cav. might be best explained by evolutionary parallelism. Anthyllis (including Hymenocarpos Savi but excluding Dorycnopsis and the monotypic Tripodion Medik.) is well-resolved as a highly supported monophyletic group in analyses of nrITS data set.Datos sobre la secuencia de ITS ribosómico nuclear así como datos morfológicos revelan que Dorycnopsis gerardii (L.) Boiss. no puede pertenecer al género Anthyllis L. El género Dorycnopsis Boiss. incluye dos especies, D. gerardii y D. abyssinica (A. Rich.) V.N. Tikhom. et D.D. Sokoloff (=Vermifrux abyssinica (A. Rich.) J.B. Gillett). La similitud morfológica entre Dorycnopsis gerardii y Anthyllis onobrychioides Cav. encuentra su explicación en un paralelismo evolutivo. Anthyllis (incluyendo a Hymenocarpos Savi, pero excluyendo a Dorycnopsis y al monotípico Tripodion Medik.) se considera, a partir del análisis del nrITS, un grupo monofílitico con un buen apoyo estadístico

    On generic rank and phylogenetic relationships of Dorycnopsis Boiss. (Leguminosae, Loteae)

    Get PDF
    Nuclear ribosomal ITS sequence data as well as morphological data show that Dorycnopsis gerardii (L.) Boiss. can not be placed in the genus Anthyllis L. The genus Dorycnopsis Boiss. includes two species, D. gerardii and D. abyssinica (A. Rich.) V.N. Tikhom. et D.D. Sokoloff (=Vermifrux abyssinica (A. Rich.) J.B. Gillett). Morphological similarity between Dorycnopsis gerardii and Anthyllis onobrychioides Cav. might be best explained by evolutionary parallelism. Anthyllis (including Hymenocarpos Savi but excluding Dorycnopsis and the monotypic Tripodion Medik.) is well-resolved as a highly supported monophyletic group in analyses of nrITS data set.Datos sobre la secuencia de ITS ribosómico nuclear así como datos morfológicos revelan que Dorycnopsis gerardii (L.) Boiss. no puede pertenecer al género Anthyllis L. El género Dorycnopsis Boiss. incluye dos especies, D. gerardii y D. abyssinica (A. Rich.) V.N. Tikhom. et D.D. Sokoloff (=Vermifrux abyssinica (A. Rich.) J.B. Gillett). La similitud morfológica entre Dorycnopsis gerardii y Anthyllis onobrychioides Cav. encuentra su explicación en un paralelismo evolutivo. Anthyllis (incluyendo a Hymenocarpos Savi, pero excluyendo a Dorycnopsis y al monotípico Tripodion Medik.) se considera, a partir del análisis del nrITS, un grupo monofílitico con un buen apoyo estadístico

    Plastid Phylogenomic Analysis of Tordylieae Tribe (Apiaceae, Apioideae)

    No full text
    Based on the nrDNA ITS sequence data, the Tordylieae tribe is recognized as monophyletic with three major lineages: the subtribe Tordyliinae, the Cymbocarpum clade, and the Lefebvrea clade. Recent phylogenomic investigations showed incongruence between the nuclear and plastid genome evolution in the tribe. To assess phylogenetic relations and structure evolution of plastomes in Tordylieae, we generated eleven complete plastome sequences using the genome skimming approach and compared them with the available data from this tribe and close relatives. Newly assembled plastomes had lengths ranging from 141,148 to 150,103 base pairs and contained 122–127 genes, including 79–82 protein-coding genes, 35–37 tRNAs, and 8 rRNAs. We observed substantial differences in the inverted repeat length and gene content, accompanied by a complex picture of multiple JLA and JLB shifts. In concatenated phylogenetic analyses, Tordylieae plastomes formed at least three not closely related lineages with plastomes of the Lefebvrea clade as a sister group to plastomes from the Selineae tribe. The newly obtained data have increased our knowledge on the range of plastome variability in Apiaceae

    Two centuries from species discovery to diagnostic characters: molecular and morphological evidence for narrower species limits in the widespread SW Australian Anarthria gracilis complex (Restionaceae s.l./Anarthriaceae, Poales)

    No full text
    Background The extreme southwest of Australia is a biodiversity hotspot region that has a Mediterranean-type climate and numerous endemic plant and animal species, many of which remain to be properly delimited. We refine species limits in Anarthria, a Western Australian endemic genus characterised by the occurrence of the greatest number of plesiomorphic character states in the restiid clade of Poales. In contrast to many other groups of wind-pollinated Australian Poales, Anarthria was traditionally viewed as having well-established species limits. All six currently recognised species, which are conspicuous members of some Western Australian plant communities, were described in the first half of the 19th century. They are traditionally distinguished from each other mainly using quantitative characters. Methods We examined extensive existing herbarium specimens and made new collections of Anarthria in nature. Scanning electron microscopy and light microscopy were used to study leaf micromorphology. Molecular diversity of Anarthria was examined using a plastid (trnL-F) and a low-copy nuclear marker (at103). This is the first study of species-level molecular diversity in the restiid clade using a nuclear marker. Results Material historically classified as Anarthria gracilis R.Br. actually belongs to three distinct species, A. gracilis s.str., A. grandiflora Nees and A. dioica (Steud.) C.I.Fomichev, each of which forms a well-supported clade in phylogenetic analyses. Both segregate species were described in the first half of the 19th century but not recognised as such in subsequent taxonomic accounts. Anarthria dioica was first collected in 1826, then wrongly interpreted as a species of Juncus (Juncaceae) and described as Juncus dioicus. We provide a formal transfer of the name to Anarthria and for the first time report its clear and qualitative diagnostic characters: an extremely short leaf ligule and distinctive pattern of leaf epidermal micromorphology. A long ligule is present in A. gracilis s.str. and A. grandiflora. These species differ from each other in leaf lamina morphology and anatomy and have mostly non-overlapping distribution ranges. The narrower definition of species provides a basis for future phylogeographic analyses in Anarthria. Our study highlights a need for more extensive use of nuclear DNA markers in Restionaceae. The use of the low copy nuclear marker at103 allowed a clade comprising all three ligulate species of Anarthria to be recognised. The ligule character is used here for the first time in the taxonomy of Anarthria and merits special attention in studies of other restiids. In general, our study uncovered a superficially hidden but, in reality, conspicuous diversity in a common group of wind-pollinated plants in the southwest of Western Australia
    corecore