29 research outputs found

    Trajectories and Drivers of Genome Evolution in Surface-Associated Marine Phaeobacter

    Get PDF
    The extent of genome divergence and the evolutionary events leading to speciation of marine bacteria have mostly been studied for (locally) abundant, free-living groups. The genus Phaeobacter is found on different marine surfaces, seems to occupy geographically disjunct habitats, and is involved in different biotic interactions, and was therefore targeted in the present study. The analysis of the chromosomes of 32 closely related but geographically spread Phaeobacter strains revealed an exceptionally large, highly syntenic core genome. The flexible gene pool is constantly but slightly expanding across all Phaeobacter lineages. The horizontally transferred genes mostly originated from bacteria of the Roseobacter group and horizontal transfer most likely was mediated by gene transfer agents. No evidence for geographic isolation and habitat specificity of the different phylogenomic Phaeobacter clades was detected based on the sources of isolation. In contrast, the functional gene repertoire and physiological traits of different phylogenomic Phaeobacter clades were sufficiently distinct to suggest an adaptation to an associated lifestyle with algae, to additional nutrient sources, or toxic heavy metals. Our study reveals that the evolutionary trajectories of surface-associated marine bacteria can differ significantly from free-living marine bacteria or marine generalists

    The Genome Sequence of Methanohalophilus mahii SLPT Reveals Differences in the Energy Metabolism among Members of the Methanosarcinaceae Inhabiting Freshwater and Saline Environments

    Get PDF
    Methanohalophilus mahii is the type species of the genus Methanohalophilus, which currently comprises three distinct species with validly published names. Mhp. mahii represents moderately halophilic methanogenic archaea with a strictly methylotrophic metabolism. The type strain SLPT was isolated from hypersaline sediments collected from the southern arm of Great Salt Lake, Utah. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,012,424 bp genome is a single replicon with 2032 protein-coding and 63 RNA genes and part of the Genomic Encyclopedia of Bacteria and Archaea project. A comparison of the reconstructed energy metabolism in the halophilic species Mhp. mahii with other representatives of the Methanosarcinaceae reveals some interesting differences to freshwater species

    Activation of PKR Causes Amyloid ß-Peptide Accumulation via De-Repression of BACE1 Expression

    Get PDF
    BACE1 is a key enzyme involved in the production of amyloid ß-peptide (Aß) in Alzheimer's disease (AD) brains. Normally, its expression is constitutively inhibited due to the presence of the 5′untranslated region (5′UTR) in the BACE1 promoter. BACE1 expression is activated by phosphorylation of the eukaryotic initiation factor (eIF)2-alpha, which reverses the inhibitory effect exerted by BACE1 5′UTR. There are four kinases associated with different types of stress that could phosphorylate eIF2-alpha. Here we focus on the double-stranded (ds) RNA-activated protein kinase (PKR). PKR is activated during viral infection, including that of herpes simplex virus type 1 (HSV1), a virus suggested to be implicated in the development of AD, acting when present in brains of carriers of the type 4 allele of the apolipoprotein E gene. HSV1 is a dsDNA virus but it has genes on both strands of the genome, and from these genes complementary RNA molecules are transcribed. These could activate BACE1 expression by the PKR pathway. Here we demonstrate in HSV1-infected neuroblastoma cells, and in peripheral nervous tissue from HSV1-infected mice, that HSV1 activates PKR. Cloning BACE1 5′UTR upstream of a luciferase (luc) gene confirmed its inhibitory effect, which can be prevented by salubrinal, an inhibitor of the eIF2-alpha phosphatase PP1c. Treatment with the dsRNA analog poly (I∶C) mimicked the stimulatory effect exerted by salubrinal over BACE1 translation in the 5′UTR-luc construct and increased Aß production in HEK-APPsw cells. Summarizing, our data suggest that PKR activated in brain by HSV1 could play an important role in the development of AD

    The Chemotherapeutic Drug 5-Fluorouracil Promotes PKR-Mediated Apoptosis in a p53- Independent Manner in Colon and Breast Cancer Cells

    Get PDF
    The chemotherapeutic drug 5-FU is widely used in the treatment of a range of cancers, but resistance to the drug remains a major clinical problem. Since defects in the mediators of apoptosis may account for chemo-resistance, the identification of new targets involved in 5-FU-induced apoptosis is of main clinical interest. We have identified the ds-RNA-dependent protein kinase (PKR) as a key molecular target of 5-FU involved in apoptosis induction in human colon and breast cancer cell lines. PKR distribution and activation, apoptosis induction and cytotoxic effects were analyzed during 5-FU and 5-FU/IFNα treatment in several colon and breast cancer cell lines with different p53 status. PKR protein was activated by 5-FU treatment in a p53-independent manner, inducing phosphorylation of the protein synthesis translation initiation factor eIF-2α and cell death by apoptosis. Furthermore, PKR interference promoted a decreased response to 5-FU treatment and those cells were not affected by the synergistic antitumor activity of 5-FU/IFNα combination. These results, taken together, provide evidence that PKR is a key molecular target of 5-FU with potential relevance in the clinical use of this drug

    Novel Insights into the Diversity of Catabolic Metabolism from Ten Haloarchaeal Genomes

    Get PDF
    BACKGROUND: The extremely halophilic archaea are present worldwide in saline environments and have important biotechnological applications. Ten complete genomes of haloarchaea are now available, providing an opportunity for comparative analysis. METHODOLOGY/PRINCIPAL FINDINGS: We report here the comparative analysis of five newly sequenced haloarchaeal genomes with five previously published ones. Whole genome trees based on protein sequences provide strong support for deep relationships between the ten organisms. Using a soft clustering approach, we identified 887 protein clusters present in all halophiles. Of these core clusters, 112 are not found in any other archaea and therefore constitute the haloarchaeal signature. Four of the halophiles were isolated from water, and four were isolated from soil or sediment. Although there are few habitat-specific clusters, the soil/sediment halophiles tend to have greater capacity for polysaccharide degradation, siderophore synthesis, and cell wall modification. Halorhabdus utahensis and Haloterrigena turkmenica encode over forty glycosyl hydrolases each, and may be capable of breaking down naturally occurring complex carbohydrates. H. utahensis is specialized for growth on carbohydrates and has few amino acid degradation pathways. It uses the non-oxidative pentose phosphate pathway instead of the oxidative pathway, giving it more flexibility in the metabolism of pentoses. CONCLUSIONS: These new genomes expand our understanding of haloarchaeal catabolic pathways, providing a basis for further experimental analysis, especially with regard to carbohydrate metabolism. Halophilic glycosyl hydrolases for use in biofuel production are more likely to be found in halophiles isolated from soil or sediment

    Codivergence of Mycoviruses with Their Hosts

    Get PDF
    BACKGROUND: The associations between pathogens and their hosts are complex and can result from any combination of evolutionary events such as codivergence, switching, and duplication of the pathogen. Mycoviruses are RNA viruses which infect fungi and for which natural vectors are so far unknown. Thus, lateral transfer might be improbable and codivergence their dominant mode of evolution. Accordingly, mycoviruses are a suitable target for statistical tests of virus-host codivergence, but inference of mycovirus phylogenies might be difficult because of low sequence similarity even within families. METHODOLOGY: We analyzed here the evolutionary dynamics of all mycovirus families by comparing virus and host phylogenies. Additionally, we assessed the sensitivity of the co-phylogenetic tests to the settings for inferring virus trees from their genome sequences and approximate, taxonomy-based host trees. CONCLUSIONS: While sequence alignment filtering modes affected branch support, the overall results of the co-phylogenetic tests were significantly influenced only by the number of viruses sampled per family. The trees of the two largest families, Partitiviridae and Totiviridae, were significantly more similar to those of their hosts than expected by chance, and most individual host-virus links had a significant positive impact on the global fit, indicating that codivergence is the dominant mode of virus diversification. However, in this regard mycoviruses did not differ from closely related viruses sampled from non-fungus hosts. The remaining virus families were either dominated by other evolutionary modes or lacked an apparent overall pattern. As this negative result might be caused by insufficient taxon sampling, the most parsimonious hypothesis still is that host-parasite evolution is basically the same in all mycovirus families. This is the first study of mycovirus-host codivergence, and the results shed light not only on how mycovirus biology affects their co-phylogenetic relationships, but also on their presumable host range itself

    A case-only study to identify genetic modifiers of breast cancer risk for BRCA1/BRCA2 mutation carriers

    Get PDF
    Abstract: Breast cancer (BC) risk for BRCA1 and BRCA2 mutation carriers varies by genetic and familial factors. About 50 common variants have been shown to modify BC risk for mutation carriers. All but three, were identified in general population studies. Other mutation carrier-specific susceptibility variants may exist but studies of mutation carriers have so far been underpowered. We conduct a novel case-only genome-wide association study comparing genotype frequencies between 60,212 general population BC cases and 13,007 cases with BRCA1 or BRCA2 mutations. We identify robust novel associations for 2 variants with BC for BRCA1 and 3 for BRCA2 mutation carriers, P < 10−8, at 5 loci, which are not associated with risk in the general population. They include rs60882887 at 11p11.2 where MADD, SP11 and EIF1, genes previously implicated in BC biology, are predicted as potential targets. These findings will contribute towards customising BC polygenic risk scores for BRCA1 and BRCA2 mutation carriers

    A case-only study to identify genetic modifiers of breast cancer risk for BRCA1/BRCA2 mutation carriers

    Get PDF
    Breast cancer (BC) risk for BRCA1 and BRCA2 mutation carriers varies by genetic and familial factors. About 50 common variants have been shown to modify BC risk for mutation carriers. All but three, were identified in general population studies. Other mutation carrier-specific susceptibility variants may exist but studies of mutation carriers have so far been underpowered. We conduct a novel case-only genome-wide association study comparing genotype frequencies between 60,212 general population BC cases and 13,007 cases with BRCA1 or BRCA2 mutations. We identify robust novel associations for 2 variants with BC for BRCA1 and 3 for BRCA2 mutation carriers, P < 10−8, at 5 loci, which are not associated with risk in the general population. They include rs60882887 at 11p11.2 where MADD, SP11 and EIF1, genes previously implicated in BC biology, are predicted as potential targets. These findings will contribute towards customising BC polygenic risk scores for BRCA1 and BRCA2 mutation carriers

    Complete genome sequence of the Phaeobacter gallaeciensis type strain CIP 105210T (= DSM 26640T = BS107T)

    Get PDF
    Phaeobacter gallaeciensis CIP 105210(T) (= DSM 26640(T) = BS107(T)) is the type strain of the species Phaeobacter gallaeciensis. The genus Phaeobacter belongs to the marine Roseobacter group (Rhodobacteraceae, Alphaproteobacteria). Phaeobacter species are effective colonizers of marine surfaces, including frequent associations with eukaryotes. Strain BS107(T) was isolated from a rearing of the scallop Pecten maximus. Here we describe the features of this organism, together with the complete genome sequence, comprising eight circular replicons with a total of 4,448 genes. In addition to a high number of extrachromosomal replicons, the genome contains six genomic island and three putative prophage regions, as well as a hybrid between a plasmid and a circular phage. Phylogenomic analyses confirm previous results, which indicated that the originally reported P. gallaeciensis type-strain deposit DSM 17395 belongs to P. inhibens and that CIP 105210(T) (= DSM 26640(T)) is the sole genome-sequenced representative of P. gallaeciensis
    corecore