120 research outputs found

    A Comparison of the Sensitivity of Contrast-Specific Imaging Modes on Clinical and Preclinical Ultrasound Scanners

    Get PDF
    Ultrasonic contrast agents are used routinely to aid clinical diagnosis. All premium- and mid-range scanners utilise contrast-specific imaging techniques to preferentially isolate and display the nonlinear signals generated from the microbubbles when insonated with a series of ultrasound pulses. In this manuscript the abilities of four premium ultrasound scanners to detect and display the ultrasound signal from two commercially available contrast agents—SonoVue and DEFINITY®—are compared. A flow phantom was built using tubes with internal diameters of 1.6 mm and 3.2 mm, suspended at depths of 1, 5 and 8 cm and embedded in tissue-mimicking material. Dilute solutions of SonoVue and DEFINITY® were pumped through the phantom at 0.25 mL/s and 1.5 mL/s. Four transducers were used to scan the tubes—a GE Logiq E9 (C2-9) curvilinear probe, a Philips iU22 L9-3 linear array probe, an Esaote MyLab Twice linear array LA523 (4–13 MHz) and a Fujifilm VisualSonics Vevo3100 MX250 (15–30 MHz) linear array probe. We defined a new parameter to compare the ability of the ultrasound scanners to display the contrast enhancement. This was defined as the ratio of grey-scale intensity ratio in contrast-specific imaging mode relative to the B-mode intensity from the same region-of-interest within the corresponding B-mode image. The study demonstrated that the flow rates used in this study had no effect on the contrast-specific imaging mode to B-mode (CSIM-BM) ratio for the three clinical scanners studied, with SonoVue demonstrating broadly similar CSIM-BM ratios across all 3 clinical scanners. DEFINITY® also displayed similar results to SonoVue except when insonated with the Esaote MyLab Twice LA523 transducer, where it demonstrated significantly higher CSIM-BM ratios at superficial depths

    Recommendations for the Cleaning of Endocavity Ultrasound Transducers Between Patients

    Get PDF
    The COVID-19 pandemic highlighted the importance of infection prevention and control (IPC) measures for all medical procedures, including ultrasound examinations. As the use of ultrasound increases across more medical modalities, including point-of-care ultrasound, so does the risk of possible transmission from equipment to patients and patients to patients. This is particularly relevant for endocavity transducers, such as trans-vaginal, trans-rectal and trans-oesophageal, which could be contaminated with organisms from blood, mucosal, genital or rectal secretions. This article proports to update the WFUMB 2017 guidelines which focussed on the cleaning and disinfection of transvaginal ultrasound transducers between patients [1].<br/

    Broadband acoustic measurement of an agar-based tissue mimicking material - a longitudinal study

    Get PDF
    Commercially available ultrasound quality assurance test phantoms rely upon the long-term acoustic stability of tissue-mimicking-materials (TMMs). The measurement of the acoustic properties can be technically challenging and it is important to ensure its stability. The standard technique is to film-wrap samples of TMM and to measure the acoustic properties in a water bath. In this study, a modified technique is proposed whereby the samples of TMM are measured in a preserving fluid that is intended to maintain their characteristics. The acoustic properties were evaluated using a broadband pulse-echo substitution technique over the frequency range of 4.5 – 50 MHz at 0, 6 and 12 months using both techniques. For both techniques, the measured mean values for the speed of sound and the attenuation were very similar and within the IEC recommended value. However, the results obtained using the proposed modified technique demonstrated greater stability over the 1-year period when compared with the results acquired using the standard technique

    Assessment of Spectral Doppler in Preclinical Ultrasound Using a Small-Size Rotating Phantom

    Get PDF
    Preclinical ultrasound scanners are used to measure blood flow in small animals, but the potential errors in blood velocity measurements have not been quantified. This investigation rectifies this omission through the design and use of phantoms and evaluation of measurement errors for a preclinical ultrasound system (Vevo 770, Visualsonics, Toronto, ON, Canada). A ray model of geometric spectral broadening was used to predict velocity errors. A small-scale rotating phantom, made from tissue-mimicking material, was developed. True and Doppler-measured maximum velocities of the moving targets were compared over a range of angles from 10° to 80°. Results indicate that the maximum velocity was overestimated by up to 158% by spectral Doppler. There was good agreement (50%). The phantom is capable of validating the performance of blood velocity measurement in preclinical ultrasound

    Correspondence - Characterization of the effective performance of a high-frequency annular-array-based imaging system using anechoic-pipe phantoms

    Get PDF
    A resolution integral (RI) method based on anechoic-pipe, tissue-mimicking phantoms was used to compare the detection capabilities of high-frequency imaging systems based on a single-element transducer, a state-of-the-art, 256-element linear array or a 5-element annular array. All transducers had a central frequency of 40 MHz with similar conventionally measured axial and lateral resolutions (about 50 and 85 μm, respectively). Using the RI metric, the annular array achieved the highest performance (RI = 60), followed by the linear array (47) and the single-element transducer (24). Results showed that the RI metric could be used to efficiently quantify the effective transducer performance and compare the image quality of different systems

    Ultrastable shelled PFC nanobubbles:a platform for ultrasound-assisted diagnostics and therapy

    Get PDF
    Nanoscale echogenic bubbles (NBs), can be used as a theranostic platform for the localized delivery of encapsulated drugs. However, the generation of NBs is challenging, because they have lifetimes as short as milliseconds in solution. The aim of this work has been the optimization of a preparation method for the generation of stable NBs, characterized by measuring: a) acoustic efficiency, b) nano-size, to ensure passive tumour targeting, c) stability during storage and after injection and d) ability to entrap drugs. NBs are monodisperse and ultrastable, their stability achieved by generation of an amphiphilic multilamellar shell able to efficiently retain the PFC gas. The NBs perform as good acoustic enhancers over a wide frequency range and out of resonant conditions, as tested in both in vitro and in vivo experiments, proving to be a potential platform for the production of versatile carriers to be used in ultrasound-assisted diagnostic, therapeutic and theranostic applications

    Development of Preclinical Ultrasound Imaging Techniques to Identify and Image Sentinel Lymph Nodes in a Cancerous Animal Model

    Get PDF
    Lymph nodes (LNs) are believed to be the first organs targeted by colorectal cancer cells detached from a primary solid tumor because of their role in draining interstitial fluids. Better detection and assessment of these organs have the potential to help clinicians in stratification and designing optimal design of oncological treatments for each patient. Whilst highly valuable for the detection of primary tumors, CT and MRI remain limited for the characterization of LNs. B-mode ultrasound (US) and contrast-enhanced ultrasound (CEUS) can improve the detection of LNs and could provide critical complementary information to MRI and CT scans; however, the European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) guidelines advise that further evidence is required before US or CEUS can be recommended for clinical use. Moreover, knowledge of the lymphatic system and LNs is relatively limited, especially in preclinical models. In this pilot study, we have created a mouse model of metastatic cancer and utilized 3D high-frequency ultrasound to assess the volume, shape, and absence of hilum, along with CEUS to assess the flow dynamics of tumor-free and tumor-bearing LNs in vivo. The aforementioned parameters were used to create a scoring system to predict the likelihood of a disease-involved LN before establishing post-mortem diagnosis with histopathology. Preliminary results suggest that a sum score of parameters may provide a more accurate diagnosis than the LN size, the single parameter currently used to predict the involvement of an LN in disease

    Community Survey Results Show that Standardisation of Preclinical Imaging Techniques Remains a Challenge

    Get PDF
    Abstract Purpose To support acquisition of accurate, reproducible and high-quality preclinical imaging data, various standardisation resources have been developed over the years. However, it is unclear the impact of those efforts in current preclinical imaging practices. To better understand the status quo in the field of preclinical imaging standardisation, the STANDARD group of the European Society of Molecular Imaging (ESMI) put together a community survey and a forum for discussion at the European Molecular Imaging Meeting (EMIM) 2022. This paper reports on the results from the STANDARD survey and the forum discussions that took place at EMIM2022. Procedures The survey was delivered to the community by the ESMI office and was promoted through the Society channels, email lists and webpages. The survey contained seven sections organised as generic questions and imaging modality-specific questions. The generic questions focused on issues regarding data acquisition, data processing, data storage, publishing and community awareness of international guidelines for animal research. Specific questions on practices in optical imaging, PET, CT, SPECT, MRI and ultrasound were further included. Results Data from the STANDARD survey showed that 47% of survey participants do not have or do not know if they have QC/QA guidelines at their institutes. Additionally, a large variability exists in the ways data are acquired, processed and reported regarding general aspects as well as modality-specific aspects. Moreover, there is limited awareness of the existence of international guidelines on preclinical (imaging) research practices. Conclusions Standardisation of preclinical imaging techniques remains a challenge and hinders the transformative potential of preclinical imaging to augment biomedical research pipelines by serving as an easy vehicle for translation of research findings to the clinic. Data collected in this project show that there is a need to promote and disseminate already available tools to standardise preclinical imaging practices. </jats:sec
    • …
    corecore