14 research outputs found
Elegance of disordered granular packings: a validation of Edwards' hypothesis
We have found a way to analyze Edwards' density of states for static granular
packings in the special case of round, rigid, frictionless grains assuming
constant coordination number. It obtains the most entropic density of single
grain states, which predicts several observables including the distribution of
contact forces. We compare these results against empirical data obtained in
dynamic simulations of granular packings. The agreement is quite good, helping
validate the use of statistical mechanics methods in granular physics. The
differences between theory and empirics are mainly related to the coordination
number, and when the empirical data are sorted by that number we obtain several
insights that suggest an underlying elegance in the density of states.Comment: 4 pages, 5 figures, Changes in the reference
Empirical Scaling Laws of Rocket Exhaust Cratering
When launching or landing a space craft on the regolith of a terrestrial surface, special attention needs to be paid to the rocket exhaust cratering effects. If the effects are not controlled, the rocket cratering could damage the spacecraft or other surrounding hardware. The cratering effects of a rocket landing on a planet's surface are not understood well, especially for the lunar case with the plume expanding in vacuum. As a result, the blast effects cannot be estimated sufficiently using analytical theories. It is necessary to develop physics-based simulation tools in order to calculate mission-essential parameters. In this work we test out the scaling laws of the physics in regard to growth rate of the crater depth. This will provide the physical insight necessary to begin the physics-based modeling
Dynamical Scaling of Jet-Induced Crater Formation in a Granular bed
No abstract availabl
Experimental realization of a nonlinear acoustic lens with a tunable focus
We realize a nonlinear acoustic lens composed of a two-dimensional array of sphere chains interfaced with water. The chains are able to support solitary waves which, when interfaced with a linear medium, transmit compact pulses with minimal oscillations. When focused, the lens is able to produce compact pressure pulses of high amplitude, the “sound bullets.” We demonstrate that the focal point can be controlled via pre-compression of the individual chains, as this changes the wave speed within them. The experimental results agree well both spatially and temporally with analytical predictions over a range of focus locations
Rocket Exhaust Cratering: Transient Effects from Abrupt Application of Jet
No abstract availabl
Excavation of Regolith by Impinging Jets of Gas
There are many situations in nature and technology where particulate matter is excavated by a fluid jet. Such a process is often used to excavate soil or to dig wells. Air jets are often used to transport particulate matter such as powders in various industrial processes. Similar situations occur in nature, as when waterfalls scour holes in sand. In other cases, the excavation is unwanted such as when a rocket lands on the sandy or dusty surface of a planet or moon. Recent research into regolith excavation by gas jets has obtained new insights into the physical processes of that excavation, and these may lead to new advances in technology for more efficient fluid-jet excavation processes and for better control of the unwanted excavation effects of landing rockets. This talk will explain the new insights and point to future work supporting lunar exploration
Cratering Soil by Impinging Jets of Gas, with Application to Landing Rockets on Planetary Surfaces
Several physical mechanisms are involved in excavating granular materials beneath a vertical jet of gas. These occur, for example, beneath the exhaust plume of a rocket landing on the soil of the Moon or Mars. A series of experiments and simulations have been performed to provide a detailed view of the complex gas/soil interactions. Measurements have also been taken from the Apollo lunar landing videos and from photographs of the resulting terrain, and these help to demonstrate how the interactions extrapolate into the lunar environment. It is important to understand these processes at a fundamental level to support the ongoing design of higher-fidelity numerical simulations and larger-scale experiments. These are needed to enable future lunar exploration wherein multiple hardware assets will be placed on the Moon within short distances of one another. The high-velocity spray of soil from landing spacecraft must be accurately predicted and controlled lest it erosively damage the surrounding hardware
Jet-induced cratering of a granular surface with application to lunar spaceports
The erosion of lunar soil by rocket exhaust plumes is investigated
experimentally. This has identified the diffusion-driven flow in the bulk of
the sand as an important but previously unrecognized mechanism for erosion
dynamics. It has also shown that slow regime cratering is governed by the
recirculation of sand in the widening geometry of the crater. Scaling
relationships and erosion mechanisms have been characterized in detail for the
slow regime. The diffusion-driven flow occurs in both slow and fast regime
cratering. Because diffusion-driven flow had been omitted from the lunar
erosion theory and from the pressure cratering theory of the Apollo and Viking
era, those theories cannot be entirely correct.Comment: 13 pages, link to published version:
http://cedb.asce.org/cgi/WWWdisplay.cgi?090000