19 research outputs found

    No evidence of an association between mitochondrial DNA variants and osteoarthritis in 7393 cases and 5122 controls.

    Get PDF
    OBJECTIVES: Osteoarthritis (OA) has a complex aetiology with a strong genetic component. Genome-wide association studies implicate several nuclear genes in the aetiology, but a major component of the heritability has yet to be defined at the molecular level. Initial studies implicate maternally inherited variants of mitochondrial DNA (mtDNA) in subgroups of patients with OA based on gender and specific joint involvement, but these findings have not been replicated. METHODS: The authors studied 138 maternally inherited mtDNA variants genotyped in a two cohort genetic association study across a total of 7393 OA cases from the arcOGEN consortium and 5122 controls genotyped in the Wellcome Trust Case Control consortium 2 study. RESULTS: Following data quality control we examined 48 mtDNA variants that were common in cohort 1 and cohort 2, and found no association with OA. None of the phenotypic subgroups previously associated with mtDNA haplogroups were associated in this study. CONCLUSIONS: We were not able to replicate previously published findings in the largest mtDNA association study to date. The evidence linking OA to mtDNA is not compelling at present

    Identification of new susceptibility loci for osteoarthritis (arcOGEN):a genome-wide association study

    Get PDF
    To access publisher's full text version of this article. Please click on the hyperlink in Additional Links field.Osteoarthritis is the most common form of arthritis worldwide and is a major cause of pain and disability in elderly people. The health economic burden of osteoarthritis is increasing commensurate with obesity prevalence and longevity. Osteoarthritis has a strong genetic component but the success of previous genetic studies has been restricted due to insufficient sample sizes and phenotype heterogeneity. We undertook a large genome-wide association study (GWAS) in 7410 unrelated and retrospectively and prospectively selected patients with severe osteoarthritis in the arcOGEN study, 80% of whom had undergone total joint replacement, and 11,009 unrelated controls from the UK. We replicated the most promising signals in an independent set of up to 7473 cases and 42,938 controls, from studies in Iceland, Estonia, the Netherlands, and the UK. All patients and controls were of European descent. We identified five genome-wide significant loci (binomial test p≀5·0×10(-8)) for association with osteoarthritis and three loci just below this threshold. The strongest association was on chromosome 3 with rs6976 (odds ratio 1·12 [95% CI 1·08-1·16]; p=7·24×10(-11)), which is in perfect linkage disequilibrium with rs11177. This SNP encodes a missense polymorphism within the nucleostemin-encoding gene GNL3. Levels of nucleostemin were raised in chondrocytes from patients with osteoarthritis in functional studies. Other significant loci were on chromosome 9 close to ASTN2, chromosome 6 between FILIP1 and SENP6, chromosome 12 close to KLHDC5 and PTHLH, and in another region of chromosome 12 close to CHST11. One of the signals close to genome-wide significance was within the FTO gene, which is involved in regulation of bodyweight-a strong risk factor for osteoarthritis. All risk variants were common in frequency and exerted small effects. Our findings provide insight into the genetics of arthritis and identify new pathways that might be amenable to future therapeutic intervention.Arthritis Research UK 1803

    Evaluation of the genetic overlap between osteoarthritis with body mass index and height using genome-wide association scan data.

    Get PDF
    OBJECTIVES: Obesity as measured by body mass index (BMI) is one of the major risk factors for osteoarthritis. In addition, genetic overlap has been reported between osteoarthritis and normal adult height variation. We investigated whether this relationship is due to a shared genetic aetiology on a genome-wide scale. METHODS: We compared genetic association summary statistics (effect size, p value) for BMI and height from the GIANT consortium genome-wide association study (GWAS) with genetic association summary statistics from the arcOGEN consortium osteoarthritis GWAS. Significance was evaluated by permutation. Replication of osteoarthritis association of the highlighted signals was investigated in an independent dataset. Phenotypic information of height and BMI was accounted for in a separate analysis using osteoarthritis-free controls. RESULTS: We found significant overlap between osteoarthritis and height (p=3.3×10(-5) for signals with p≀0.05) when the GIANT and arcOGEN GWAS were compared. For signals with p≀0.001 we found 17 shared signals between osteoarthritis and height and four between osteoarthritis and BMI. However, only one of the height or BMI signals that had shown evidence of association with osteoarthritis in the arcOGEN GWAS was also associated with osteoarthritis in the independent dataset: rs12149832, within the FTO gene (combined p=2.3×10(-5)). As expected, this signal was attenuated when we adjusted for BMI. CONCLUSIONS: We found a significant excess of shared signals between both osteoarthritis and height and osteoarthritis and BMI, suggestive of a common genetic aetiology. However, only one signal showed association with osteoarthritis when followed up in a new dataset
    corecore