4,417 research outputs found

    Order-N Density-Matrix Electronic-Structure Method for General Potentials

    Full text link
    A new order-N method for calculating the electronic structure of general (non-tight-binding) potentials is presented. The method uses a combination of the ``purification''-based approaches used by Li, Nunes and Vanderbilt, and Daw, and a representation of the density matrix based on ``travelling basis orbitals''. The method is applied to several one-dimensional examples, including the free electron gas, the ``Morse'' bound-state potential, a discontinuous potential that mimics an interface, and an oscillatory potential that mimics a semiconductor. The method is found to contain Friedel oscillations, quantization of charge in bound states, and band gap formation. Quantitatively accurate agreement with exact results is found in most cases. Possible advantages with regard to treating electron-electron interactions and arbitrary boundary conditions are discussed.Comment: 13 pages, REVTEX, 7 postscript figures (not quite perfect

    The Quiet-Sun Photosphere and Chromosphere

    Full text link
    The overall structure and the fine structure of the solar photosphere outside active regions are largely understood, except possibly important roles of a turbulent near-surface dynamo at its bottom, internal gravity waves at its top, and small-scale vorticity. Classical 1D static radiation-escape modelling has been replaced by 3D time-dependent MHD simulations that come closer to reality. The solar chromosphere, in contrast, remains ill-understood although its pivotal role in coronal mass and energy loading makes it a principal research area. Its fine structure defines its overall structure, so that hard-to-observe and hard-to-model small-scale dynamical processes are the key to understanding. However, both chromospheric observation and chromospheric simulation presently mature towards the required sophistication. The open-field features seem of greater interest than the easier-to-see closed-field features.Comment: Accepted for special issue "Astrophysical Processes on the Sun" of Phil. Trans. Royal Soc. A, ed. C. Parnell. Note: clicking on the year in a citation opens the corresponding ADS abstract page in the browse

    Force-matched embedded-atom method potential for niobium

    Get PDF
    Large-scale simulations of plastic deformation and phase transformations in alloys require reliable classical interatomic potentials. We construct an embedded-atom method potential for niobium as the first step in alloy potential development. Optimization of the potential parameters to a well-converged set of density-functional theory (DFT) forces, energies, and stresses produces a reliable and transferable potential for molecular dynamics simulations. The potential accurately describes properties related to the fitting data, and also produces excellent results for quantities outside the fitting range. Structural and elastic properties, defect energetics, and thermal behavior compare well with DFT results and experimental data, e.g., DFT surface energies are reproduced with less than 4% error, generalized stacking-fault energies differ from DFT values by less than 15%, and the melting temperature is within 2% of the experimental value.Comment: 17 pages, 13 figures, 7 table

    Effects of crack tip geometry on dislocation emission and cleavage: A possible path to enhanced ductility

    Full text link
    We present a systematic study of the effect of crack blunting on subsequent crack propagation and dislocation emission. We show that the stress intensity factor required to propagate the crack is increased as the crack is blunted by up to thirteen atomic layers, but only by a relatively modest amount for a crack with a sharp 60^\circ corner. The effect of the blunting is far less than would be expected from a smoothly blunted crack; the sharp corners preserve the stress concentration, reducing the effect of the blunting. However, for some material parameters blunting changes the preferred deformation mode from brittle cleavage to dislocation emission. In such materials, the absorption of preexisting dislocations by the crack tip can cause the crack tip to be locally arrested, causing a significant increase in the microscopic toughness of the crack tip. Continuum plasticity models have shown that even a moderate increase in the microscopic toughness can lead to an increase in the macroscopic fracture toughness of the material by several orders of magnitude. We thus propose an atomic-scale mechanism at the crack tip, that ultimately may lead to a high fracture toughness in some materials where a sharp crack would seem to be able to propagate in a brittle manner. Results for blunt cracks loaded in mode II are also presented.Comment: 12 pages, REVTeX using epsfig.sty. 13 PostScript figures. Final version to appear in Phys. Rev. B. Main changes: Discussion slightly shortened, one figure remove

    Lithium in Blanco1: Implications for Stellar Mixing

    Full text link
    We obtain lithium abundances for G and K stars in Blanco 1, an open cluster with an age similar to, or slightly younger than, the Pleiades. We critically examine previous spectroscopic abundance analyses of Blanco 1 and conclude that while there were flaws in earlier work, it is likely that Blanco 1 is close in overall metallicity to the older Hyades cluster and more metal-rich than the Pleiades. However, we find Blanco 1 has Li abundances and rotation rates similar to the Pleiades, contradicting predictions from standard stellar evolution models, in which convective pre-main sequence (PMS) Li depletion should increase rapidly with metallicity. If the high metallicity of Blanco 1 is subsequently confirmed, our observations imply (1) that a currently unknown mechanism severely inhibits PMS Li depletion, (2) that additional non-standard mixing modes, such as those driven by rotation and angular momentum loss, are then responsible for main sequence Li depletion between the ages of Blanco 1 and the Hyades, and (3) that in clusters younger than the Hyades, metallicity plays only a minor role in determining the amount of Li depletion among G and K stars. These conclusions suggest that Li abundance remains a useful age indicator among young (less than 700 Myr) stars even when metallicities are unknown. If non-standard mixing is effective in Population I stars, the primordial Li abundance could be significantly larger than present day Population II Li abundances, due to prior Li depletion.Comment: 18 pages, 3 figs. To appear in ApJ Vol. 511 (Jan 20 1999

    Boron in Very Metal-Poor Stars

    Get PDF
    We have observed the B I 2497 A line to derive the boron abundances of two very metal-poor stars selected to help in tracing the origin and evolution of this element in the early Galaxy: BD +23 3130 and HD 84937. The observations were conducted using the Goddard High Resolution Spectrograph on board the Hubble Space Telescope. A very detailed abundance analysis via spectral synthesis has been carried out for these two stars, as well as for two other metal-poor objects with published spectra, using both Kurucz and OSMARCS model photospheres, and taking into account consistently the NLTE effects on the line formation. We have also re-assessed all published boron abundances of old disk and halo unevolved stars. Our analysis shows that the combination of high effective temperature (Teff > 6000 K, for which boron is mainly ionized) and low metallicity ([Fe/H]<-1) makes it difficult to obtain accurate estimates of boron abundances from the B I 2497 A line. This is the case of HD 84937 and three other published objects (including two stars with [Fe/H] ~ -3), for which only upper limits can be established. BD +23 3130, with [Fe/H] ~ -2.9 and logN(B)_NLTE=0.05+/-0.30, appears then as the most metal-poor star for which a firm measurement of the boron abundance presently exists. The evolution of the boron abundance with metallicity that emerges from the seven remaining stars with Teff < 6000 K and [Fe/H]<-1, for which beryllium abundances were derived using the same stellar parameters, shows a linear increase with a slope ~ 1. Furthermore, the B/Be ratio found is constant at a value ~ 20 for stars in the range -3<[Fe/H]<-1. These results point to spallation reactions of ambient protons and alpha particles with energetic particles enriched in CNO as the origin of boron and beryllium in halo stars.Comment: 38 pages, 11 Encapsulated Postscript figures (included), uses aaspp4.sty. Accepted for publication in The Astrophysical Journal. The preprint is also available at: http://www.iac.es/publicaciones/preprints.htm

    Evidence for Shape Co-existence at medium spin in 76Rb

    Full text link
    Four previously known rotational bands in 76Rb have been extended to moderate spins using the Gammasphere and Microball gamma ray and charged particle detector arrays and the 40Ca(40Ca,3pn) reaction at a beam energy of 165 MeV. The properties of two of the negative-parity bands can only readily be interpreted in terms of the highly successful Cranked Nilsson-Strutinsky model calculations if they have the same configuration in terms of the number of g9/2 particles, but they result from different nuclear shapes (one near-oblate and the other near-prolate). These data appear to constitute a unique example of shape co-existing structures at medium spins.Comment: Accepted for publication in Physics Letters

    Main-Sequence and sub-giant stars in the Globular Cluster NGC6397: The complex evolution of the lithium abundance

    Full text link
    Thanks to the high multiplex and efficiency of Giraffe at the VLT we have been able for the first time to observe the Li I doublet in the Main Sequence (MS) stars of a Globular Cluster. At the same time we observed Li in a sample of Sub-Giant (SG) stars of the same B-V colour. Our final sample is composed of 84 SG stars and 79 MS stars. In spite of the fact that SG and MS span the same temperature range we find that the equivalent widths of the Li I doublet in SG stars are systematically larger than those in MS stars, suggesting a higher Li content among SG stars. This is confirmed by our quantitative analysis. We derived the effective temperatures, from Hα\alpha fitting, and NLTE Li abundances of the stars in our the sample, using 3D and 1D models. We find that SG stars have a mean Li abundance higher by 0.1dex than MS stars, using both 1D and 3D models. We also detect a positive slope of Li abundance with effective temperature. These results provide an unambiguous evidence that the Li abundance changes with evolutionary status. The physical mechanisms responsible for this behaviour are not yet clear, and none of the existing models seems to describe accurately these observations. Based on these conclusions, we believe that the cosmological lithium problem still remains an open question.Comment: Proceedings of the contributed talk presented at the IAU Symposium 26

    Exploiting Term Hiding to Reduce Run-time Checking Overhead

    Full text link
    One of the most attractive features of untyped languages is the flexibility in term creation and manipulation. However, with such power comes the responsibility of ensuring the correctness of these operations. A solution is adding run-time checks to the program via assertions, but this can introduce overheads that are in many cases impractical. While static analysis can greatly reduce such overheads, the gains depend strongly on the quality of the information inferred. Reusable libraries, i.e., library modules that are pre-compiled independently of the client, pose special challenges in this context. We propose a technique which takes advantage of module systems which can hide a selected set of functor symbols to significantly enrich the shape information that can be inferred for reusable libraries, as well as an improved run-time checking approach that leverages the proposed mechanisms to achieve large reductions in overhead, closer to those of static languages, even in the reusable-library context. While the approach is general and system-independent, we present it for concreteness in the context of the Ciao assertion language and combined static/dynamic checking framework. Our method maintains the full expressiveness of the assertion language in this context. In contrast to other approaches it does not introduce the need to switch the language to a (static) type system, which is known to change the semantics in languages like Prolog. We also study the approach experimentally and evaluate the overhead reduction achieved in the run-time checks.Comment: 26 pages, 10 figures, 2 tables; an extension of the paper version accepted to PADL'18 (includes proofs, extra figures and examples omitted due to space reasons

    Angular Forces Around Transition Metals in Biomolecules

    Full text link
    Quantum-mechanical analysis based on an exact sum rule is used to extract an semiclassical angle-dependent energy function for transition metal ions in biomolecules. The angular dependence is simple but different from existing classical potentials. Comparison of predicted energies with a computer-generated database shows that the semiclassical energy function is remarkably accurate, and that its angular dependence is optimal.Comment: Tex file plus 4 postscript figure
    corecore