18,129 research outputs found

    Infinitesimal Variations of Hodge Structure at Infinity

    Get PDF
    By analyzing the local and infinitesimal behavior of degenerating polarized variations of Hodge structure the notion of infinitesimal variation of Hodge structure at infinity is introduced. It is shown that all such structures can be integrated to polarized variations of Hodge structure and that, conversely, all are limits of infinitesimal variations of Hodge structure (IVHS) at finite points. As an illustration of the rich information encoded in this new structure, some instances of the maximal dimension problem for this type of infinitesimal variation are presented and contrasted with the "classical" case of IVHS at finite points

    A study of the sonic-boom characteristics of a blunt body at a Mach number of 4.14

    Get PDF
    An experimental and theoretical study has shown that the applicability of far-field sonic-boom theory previously demonstrated for more slender shapes may now be extended to bodies with ratios of diameter to length as great as 2 and to Mach numbers at least as high as 4.14. This finding is of special significance in view of the limitations to the use of existing methods for the extrapolation of close-in experimental data

    THERMTRAJ: A FORTRAN program to compute the trajectory and gas film temperatures of zero pressure balloons

    Get PDF
    A FORTRAN computer program called THERMTRAJ is presented which can be used to compute the trajectory of high altitude scientific zero pressure balloons from launch through all subsequent phases of the balloon flight. In addition, balloon gas and film temperatures can be computed at every point of the flight. The program has the ability to account for ballasting, changes in cloud cover, variable atmospheric temperature profiles, and both unconditional valving and scheduled valving of the balloon gas. The program was verified for an extensive range of balloon sizes (from 0.5 to 41.47 million cubic feet). Instructions on program usage, listing of the program source deck, input data and printed and plotted output for a verification case are included

    Estimation of wing nonlinear aerodynamic characteristics at supersonic speeds

    Get PDF
    A computational system for estimation of nonlinear aerodynamic characteristics of wings at supersonic speeds was developed and was incorporated in a computer program. This corrected linearized theory method accounts for nonlinearities in the variation of basic pressure loadings with local surface slopes, predicts the degree of attainment of theoretical leading edge thrust, and provides an estimate of detached leading edge vortex loadings that result when the theoretical thrust forces are not fully realized

    A unified thermal and vertical trajectory model for the prediction of high altitude balloon performance

    Get PDF
    A computer model for the prediction of the trajectory and thermal behavior of zero-pressure high altitude balloon was developed. In accord with flight data, the model permits radiative emission and absorption of the lifting gas and daytime gas temperatures above that of the balloon film. It also includes ballasting, venting, and valving. Predictions obtained with the model are compared with flight data from several flights and newly discovered features are discussed

    Survey and analysis of research on supersonic drag-due-to-lift minimization with recommendations for wing design

    Get PDF
    A survey of research on drag-due-to-lift minimization at supersonic speeds, including a study of the effectiveness of current design and analysis methods was conducted. The results show that a linearized theory analysis with estimated attainable thrust and vortex force effects can predict with reasonable accuracy the lifting efficiency of flat wings. Significantly better wing performance can be achieved through the use of twist and camber. Although linearized theory methods tend to overestimate the amount of twist and camber required for a given application and provide an overly optimistic performance prediction, these deficiencies can be overcome by implementation of recently developed empirical corrections. Numerous examples of the correlation of experiment and theory are presented to demonstrate the applicability and limitations of linearized theory methods with and without empirical corrections. The use of an Euler code for the estimation of aerodynamic characteristics of a twisted and cambered wing and its application to design by iteration are discussed

    Supersonic wings with significant leading-edge thrust at cruise

    Get PDF
    Experimental/theoretical correlations are presented which show that significant levels of leading edge thrust are possible at supersonic speeds for certain planforms which match the theoretical thrust distribution potential with the supporting airfoil geometry. The analytical process employed spanwise distribution of both it and/or that component of full theoretical thrust which acts as vortex lift. Significantly improved aerodynamic performance in the moderate supersonic speed regime is indicated

    Quantum Monte Carlo Calculations of A≤6A\leq6 Nuclei

    Full text link
    The energies of 3H^{3}H, 3He^{3}He, and 4He^{4}He ground states, the 32−{\frac{3}{2}}^{-} and 12−{\frac{1}{2}}^{-} scattering states of 5He^{5}He, the ground states of 6He^{6}He, 6Li^{6}Li, and 6Be^{6}Be and the 3+3^{+} and 0+0^{+} excited states of 6Li^{6}Li have been accurately calculated with the Green's function Monte Carlo method using realistic models of two- and three-nucleon interactions. The splitting of the A=3A=3 isospin T=12T=\frac{1}{2} and A=6A=6 isospin T=1T=1, Jπ=0+J^{\pi} = 0^{+} multiplets is also studied. The observed energies and radii are generally well reproduced, however, some definite differences between theory and experiment can be identified.Comment: 12 pages, 1 figur

    Lazarus ecology: Recovering the distribution and migratory patterns of the extinct Carolina parakeet.

    Get PDF
    The study of the ecology and natural history of species has traditionally ceased when a species goes extinct, despite the benefit to current and future generations of potential findings. We used the extinct Carolina parakeet as a case study to develop a framework investigating the distributional limits, subspecific variation, and migratory habits of this species as a means to recover important information about recently extinct species. We united historical accounts with museum collections to develop an exhaustive, comprehensive database of every known occurrence of this once iconic species. With these data, we combined species distribution models and ordinal niche comparisons to confront multiple conjectured hypotheses about the parakeet's ecology with empirical data on where and when this species occurred. Our results demonstrate that the Carolina parakeet's range was likely much smaller than previously believed, that the eastern and western subspecies occupied different climatic niches with broad geographical separation, and that the western subspecies was likely a seasonal migrant while the eastern subspecies was not. This study highlights the novelty and importance of collecting occurrence data from published observations on extinct species, providing a starting point for future investigations of the factors that drove the Carolina parakeet to extinction. Moreover, the recovery of lost autecological knowledge could benefit the conservation of other parrot species currently in decline and would be crucial to the success of potential de-extinction efforts for the Carolina parakeet

    Study of thin film large area photovoltaic solar energy converter Second quarterly report, 1 Jan. - 31 Mar. 1963

    Get PDF
    Thin film large area photovoltaic solar energy converter - cadmium sulfide films producted by vacuum evaparation techniqu
    • …
    corecore