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SUMMARY

A computational system for estimation of nonlinear aerodynamic characteris-
tics of wings at supersonic speeds has been developed and has been incorporated
in a computer program. This corrected linearized-theory method accounts for
nonlinearities in the variation of basic pressure loadings with local surface
slopes, predicts the degree of attainment of theoretical leading-edge thrust
forces, and provides an estimate of detached leading-edge vortex loadings that
result when the theoretical thrust forces are not fully realized.

Comparisons of estimates given by the present method with experimental
results show significant improvements in detailed wing pressure distributions
over those given by linearized theory, particularly for large angles of attack
and/or for regions of the wing where the flow is highly three-dimensional. The
new method also provides generally improved predictions of the wing overall
force and moment coefficients. The more accurate prediction of pitching moment
and the more realistic estimate of the variation of drag with camber surface
severity as dictated by the design lift coefficient are particularly important.
This latter capability should prove useful in the conduct of design studies
aimed at aerodynamic performance optimization. The new method should also pro-
vide more realistic trade-off information for selection of wing planform geom-
etry and airfoil section parameters.

INTRODUCTION

Linearized-theory methods for the aerodynamic design and analysis of super-
sonic airplane configurations (e.g., refs. 1 to 5) have proven to be very useful
in the preliminary stages of aircraft design. They provide realistic estimates
of aerodynamic performance for reasonably complete airplane configurations. 1In
addition to the wing, these configurations may include a fuselage, tail or
canard surfaces, and nacelles or stores. Design details such as wing twist and
camber and aerodynamic interference between configuration components are also
taken into account.

Linearized-theory methods, however, are impaired by their inability to
account for certain nonlinear effects. One such nonlinearity occurs in regions
of the wing (e.g., near the root chord) where the flow tends to be two-
dimensional in character. Here, local pressures are not linear functions of the
surface slope but tend to behave more in the manner of the variations predicted
by two-dimensional shock-expansion theory. Another deficiency of linearized
theory occurs in regions of the wing (e.g., near the leading edge and near the
tip) where the flow tends to be highly three-dimensional in character. Here,
conventional linearized-theory methods fail to account properly for the effect
on local pressures of the large lateral velocities. Another nonlinearity is
associated with the leading-edge thrust force and with the detached leading-edge
vortex flow that develops when leading-edge thrust is not realized.



Often, there are compensating errors in linearized theory, and the failure
to account for nonlinearities introduces little error in prediction of lift and
drag. However, errors in prediction of pitching moment are common, especially
for wings which depart from a delta planform. Additionally, for wings with
twist and camber, appreciable errors in prediction of drag due to the surface
distortion (camber drag) often occur. In particular, linearized-theory methods
fail to indicate the proper selection of camber surface severity, a function of
the design lift coefficient, for drag minimization.

This paper presents a corrected linearized-theory computational system
intended to provide estimates of wing supersonic aerodynamic characteristics
which account for these nonlinear effects. The linearized-theory solution which
serves as a framework for the system is based on numerical methods presented in
references 1 and 2. Additional work discussed herein has permitted an extension
of the original methods to provide lateral as well as longitudinal perturbation
velocities. A new pressure-coefficient formulation intended to provide more
accurate estimates of detailed pressure loadings for improved stability analysis
and analysis of critical structural design conditions was introduced in refer-
erence 6. The approach is based on the use of oblique-shock and Prandtl-Meyer
expansion relationships for accurate representation of the variation of pres-~
sures with surface slopes in two-dimensional flow and of linearized-theory per-
turbation velocities for evaluation of local three-dimensional aerodynamic
interference effects. The method, as presented in reference 6, was designed
primarily for high supersonic Mach numbers and large angles of attack. For use
in this system, it has been modified slightly to provide a more uniformly valid
improvement over linearized theory for low as well as high supersonic Mach num~
bers and for small as well as large angles of attack. Estimation of the non-
linearities associated with leading-edge thrust and the detached leading-edge
vortex flow is based on the method of reference 7 for calculation of theoretical
thrust, the method of reference 8 for estimation of the fraction of the theoret-
ical thrust actually attainable, and an improvement on the method of reference 9
for estimation of the vortex-flow induced force.

The assembled computing program is described, and a source for its procure-
ment is given. The applicability and limitations of the system are illustrated

by numerous comparisons with experimental data, both for pressure distributions
and overall forces and moments.

Use of trade names or names of manufacturers in this report does not con-
stitute an official endorsement of such products or manufacturers, either
expressed or implied, by the National Aeronautics and Space Administration.

SYMBOLS

A ‘ area of wing element in program units (1.0 for all but leading- and
trailing-edge elements); see figure 1

b wing span

Ca axial- or chord-force coefficient



oo}

Ca section axial- or chord-force coefficient

Cp drag coefficient

Cp,o drag coefficient at zero 1lift

C, lift coefficient

CL,pD design lift coefficient for a twisted and cambered wing

Cn pitching-moment coefficient

Cm, o pitching~-moment coefficient at zero 1lift

Cn normal-force coefficient

Cn section normal-~-force coefficient

Cp pressure coefficient

C; pressure coefficient given by present method, C; = Cg,a + C;,v
C;,a pressure coefficient increment due to attached flow

C;,v pressure coefficient increment due to separated vortex flow

Cp,8=90 Ppressure coefficient for the stagnation pressure behind a normal shock
Cp, 84 pressure coefficient for sonic flow angle &g
ACp lifting-pressure coefficient, lower surface minus upper surface

(ACPJ;7)Q limiting value of leading-edge singularity parameter at x' =0

c local wing chord

c mean aerodynamic chord

Cave average wing chord, Spag/b

ct theoretical section thrust coefficient, (1/gc) (dt/dy)

ct attainable section thrust coefficient, (1/qc) (dt/dy)

Cy section vortex-force coefficient

e exponent (see eqg. (25))

i.J indices used in numerical method element identification (see fig. 1)
k function of Mach number (see egs. (21) to (24))



L/D

Uo

lift-drag ratio
Mach number
free-stream Mach number

local Mach number given by adjusted linearized theory in three-
dimensional flow (interference included)

local Mach number given by adjusted linearized theory in two-
dimensional flow (interference neglected)

dynamic pressure

free~stream Reynolds number based on c

influence function for 1lift (eq. (3))

influence function for thickness (eq. (9})

wing reference area

theoretical section leading-edge thrust

attainable section leading-edge thrust

nondimensional perturbation velocities in Cartesian coordinate system

change in nondimensional perturbation velocities across the lifting
surface, upper surface minus lower surface

nondimensional local longitudinal perturbation velocity given by
adjusted linearized theory in three-dimensional flow (interference
included)

nondimensional local longitudinal perturbation velocity given by
adjusted linearized theory in two-dimensional flow (interference
neglected)

nondimensional local lateral perturbation velocity given by linearized
theory in three—dimensional flow (interference included)

Cartesian coordinates, origin at wing apex
longitudinal distance behind wing leading edge
lateral distance from nearest leading edge

thickness z-ordinate, upper surface minus lower surface



a angle of attack, deg unless otherwise specified

Oyt angle of attack for a local leading-edge thrust of zero

B = M2 -1

Y ratio of specific heats

s* effective flow deflection angle, deg

8q flow deflection angle for sonic flow, deg

A wing leading-edge sweep angle for delta wing, deg

Ae local leading-edge angle, deg

A angle between tangent to local surface and free-stream velocity

vector, deg

Aj equivalent turning angle due to local perturbation, deg
v Prandtl-Meyer expansion angle, deg

Vi Prandtl-Meyer expansion angle for M;, deg

Vo Prandtl-Meyer expansion angle for M,, deg

2 dummy variables of integration for x and vy, respectively
o} velocity potential

Ad change in velocity potential

Subscripts:

c camber surface

£ flat wing at o = 1°

ld large disturbance

le leading edge

max maximum

sd small disturbance

t thickness

© free-stream conditions



DEVELOPMENT OF COMPUTATIONAL SYSTEM

This description of the development of the system for prediction of non-
linear supersonic aerodynamics is divided into two distinct parts. 1In the
first part, numerical methods of implementing linearized theory to provide wing
surface perturbation velocities and the full or 100-percent theoretical leading-
edge thrust distribution are discussed. In the second part, semiempirical
methods for estimation of pressure loadings and aerodynamic coefficients with
nonlinear effects taken into account are discussed. Essentially, the nonlinear
estimates are treated as corrections to the linearized solution. The assembled
computational system thus incorporates the work described in both parts of the
discussion. The linearized-theory solution could, however, be obtained from
other numerical methods if they provide lateral as well as longitudinal pertur-
bation velocities and if they provide a theoretical leading-edge thrust
distribution.

Linearized-Theory Solution

Before corrections to account for nonlinear effects can be undertaken,
linearized-theory perturbation velocities must first be evaluated. Both
thickness- and lift-induced velocities must be considered, and lateral as well
as longitudinal perturbation velocities must be determined. The general solu-
tion for a cambered wing with thickness at an angle of attack is built up from
the separate contributions of a cambered wing with no thickness, an uncambered
or flat wing of the same planform with no thickness at angle of attack, and an
uncambered wing with a thickness distribution at 0° angle of attack.

Grid system used for linearized-theory solutions.- The linearized-theory
solutions are obtained by numerical solutions of the linearized-theory integral
equations based on a rectangular element grid system illustrated in figure 1,
The wing surface is represented by an array of elements approximating the
actual planform., Here, only a small number of elements are shown for the pur-
pose of illustration; in practice several thousand elements would be employed.
The employment of the g term in the lateral measurement allows the Mach line
region of influence to be represented by the inclusion or rejection of whole
elements. For better representation of the wing leading and trailing edges,
partial elements are taken into account. A field point element (element num-
ber 30 in the illustration, fig. 1) is represented by the coordinates x,By
and an influencing element is represented by the coordinates g,fn. The index-
ing notations, i(x) and Jj(By), for example, are used in program identifica-
tion of elements,

Lift-induced longitudinal perturbation velocity.- The method employed in
the evaluation of longitudinal perturbations due to lift has been described in
reference 1. Only slight modifications have been made in the present applica-
tion. The primary change is in the designation of elements by a single element
index number rather than by the indexing coordinates (L and N) previously
employed. This permits a greater economy in provision for storage of the vari-
ous parameters pertaining to a given element, since only elements within the
wing planform need be considered. Perturbation velocities generated by the wing




camber surface at 0° angle of attack and by a flat wing of the same planform at
1° angle of attack are found by following the numerical summations:

-2 9 1< - )
Aug (x,By) = 5 gfli(x),j(By)l * - z Ry ALi(E),3(Bm] Aucli(E),3(Bm] (1)
X
- 1 -
Aug (x,By) = —— tan 1° + - z Ry AL[i(E),3(Bm] Augli(E),j(Bm] (2)

where the influence factor R; is defined as

= J[l(x) - i) +0.512 - [3By) - j(Bn) - 0.5]2
[i(x) - i€) + 0.51[3By) - j(Bn) - 0.5]

J[:L(X) ~ i) + 0.512 - [§(By) - j(Bn) + 0.5]2
li(x) - i(E) + 0.51[5(By) - F(Bn) + 0.5]

(3)

The summations cover only influencing elements forward of the Mach line and aft
of the leading edge (the shaded area in fig. 1). Field point elements are taken
in the order of increasing i(x) values, so that no unknown values of Au, or
Aug are encountered.

The present method also employs the aft element sensing technique described
in reference 1 to provide a smoother distribution of velocities. The steps in
implementation of this technique are

(a) Calculate and retain temporarily preliminary Au values (Auy or Aug)
for a given 1i(x) row. Designate as Auy.

(b) Calculate and retain temporarily preliminary Au values (Au, or Aug)
for the following row, i(x) + 1, by using Auy values obtained in the previous
step. Designate as Auj.

(c) Calculate a final faired Au wvalue (Aug or Aug) for the element

1 A 1 1
Au = —<1 + >Au-| + —< >Au2 (4)
2 1+A 2\1 + A

For all but leading-edge elements, this reduces to

1
- Au 5
2 2 (5)



Values of the perturbation velocities found by this process are assumed to act
at the element midpoint.

Theoretical leading-edge thrust.- The evaluation of leading-edge thrust is
discussed at this point because this force depends directly on the previously
discussed lift-induced longitudinal perturbation velocities and because the
corrected location of these velocities obtained in the thrust evaluation process
will be used in procedures described in the following discussions. Reference 7
describes the procedures employed in much detail. The only notable difference
in the present application is that no distinction is made between flat and
cambered wings. For simplicity, the more general cambered wing formulation has
been used exclusively,

The process described in reference 7 is used to find ¢y for the cambered
wing at the 0° angle-of-attack input condition, designated Ct,cr and for the
flat wing of the same planform at 1° angle of attack, designated C¢,f- Section
thrust coefficients can be found for any other angle of attack by application of
the formula

cp = cp, £ (0 = Q)2 (6)

where the angle of attack for zero thrust at the given span station oaz¢ is
given by

Ct,c
Oth = * (7)

Ct,f

in which the sign is the opposite of the sign of the cambered wing limiting
thrust parameter. This expression for ¢4 is found by solving equation (6)
for 0z and setting cg = Ct,c for a = 0°. Sketch {(a) helps to illustrate
the principle.

r( Acp Jxt )o positive

Sketch (a)
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Lift-induced velocity potential.- The velocity potential is used in
a subsequent evaluation of lateral velocities. It is obtained by a numer-
ical integration of the lift-induced longitudinal perturbation veloc-
ities. For this purpose, a least-squares curve fit of an equation of

1

the form Au = kj — + kg % k3x' is applied to the perturbation veloc-
xl

ities. Since the velocity potential is the integral of the velocity

1
= Au = 2k WET + kox' + - ka(x')2 + kg, this procedure provides simul-
¢ 1 2 > 3 4

taneously a smoothing of the velocities and a determination of the
velocity potential. This first term of the equation represents a veloc-
ity distribution typical of the loading near the leading edge of a flat
wing with a subsonic leading edge. The second term represents a uniform
distribution as would be found near the leading edge of a flat wing with
a supersonic leading edge, or near the leading edge of a cambered wing

at design conditions. The third term provides an additional capability
for the local fitting of distributions which may be rather arbitrary. The
same procedure is applied to both the cambered and the flat wing; thus,
Au in the above equation for the velocity potential may represent either
Aug or Aug, and ¢ may represent either ¢. or o¢g.

The number of elements used in the curve fit was chosen so as to
match the smoothing to the velocity fluctuations introduced by steps in
the program leading-edge definition. An example of severe fluctuations
associated with a very highly swept leading edge (B cot A;, = 0.2) is
illustrated in sketch (b).

Mach lines
Wing leading edge

Element center line o = - -

°
ful o o®
ed .‘0“.':9'.'0:"'”

X'

Sketch (b)
Both the magnitude and the wavelength of the oscillations have been
observed to increase with increases in the leading-edge step size. The
criteria adopted equated the number of elements to the integer value of

é cot Ajo + 3. Thus, for sweep angles greater than B cot Ao = 0.5,



only four elements are used. Large numbers of elements are used only for very
highly swept wings,

The application of the procedure is illustrated in sketch (c). For a given
element, the velocities considered include those for the element in question and

Element
centroid
F ¥
-
N Au
Au 4~ ew :
k[
l/1 k ! l
2 3*
L(—-—— --——L-—- k
y ] 2

Sketch (c)

for the previous element plus those for enough following elements to provide the
number specified by the previously mentioned criteria. The dashed lines in the
sketch show the contributions of the three terms in the curve-fit equation. The
new smoothed velocity for the element in question and the change in velocity
potential from that of the previous element are also shown. The value of veloc—
ity potential for a given element is found by a summation of the changes of
velocity potential fram the leading edge for which ¢ is set to 0. Special
provision is made for elements near the leading and trailing edges of the wing
to maintain the number of elements specified by the smoothing criteria.

Thickness-induced velocity potential.- It is more convenient to adopt the
method described in reference 2, which provides the thickness velocity potential
distribution, than to solve for the velocities directly. The use of the velocity
potential distribution to obtain longitudinal and lateral perturbation veloci-
ties due to wing thickness is described in subsequent sections of this report.
Procedures for the evaluation of the thickness-induced velocity potential are
similiar to those used in the definition of lift-induced velocities. The same
grid system is employed (shown in fig. 1), and the summations cover the same
limits. The summation equation, however, is written as

1 - 3zt
b = — g Re ALi(E),3BmMI—I[i(5),3(Bm] (8)
B Ix

10



where the influence function is now

= : 3(By) - 3(Bn) - 0.5 _ j(By) - j(Bn) + 0.5
Rt = 51n—1 - Sln—1 (9)
i(x) - i(g) + 0.5 i(x) - i(§) + 0.5

Evaluation of the summations provides values of ¢ at the front and back
of each element. Element midpoint values are found by a simple averaging.
In contrast to the lift-induced velocity potential, the thickness-induced
velocity potential is not necessarily zero at the wing leading edge. A
value of ¢ at the leading edge ¢, ;¢ £for each leading-edge element is
found by interpolation. Application of the aft element sensing technique
was not found to be necessary in the derivation of the thickness velocity
potential.

Thickness—-induced perturbation velocities.- To find thickness veloc-
ities, a least-squares curve fit of an equation of the form
bt = ky x' o+ kox' + k3(x‘)2 + ¢t,Ze is applied to the thickness-induced
velocity potential described in the previous section. Since the longitu-
dinal perturbation velocity is the derivative of the velocity potential,

9%

= 5;? = % kq f%? + ko + 2k3x'. This procedure simultaneously provides
a smoothing of the velocity potential and a determination of the pertur-
bation velocity. The number of elements used in the curve fit has already
been discussed in the section entitled "Lift-induced velocity potential.”
Application of the procedure is illustrated in sketch (d). The dashed
lines show the contribution of the four terms in the curve-fit equation.

ug

Element

centroid

x !

Sketch (d4)
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Lateral perturbation velocities.- The lateral velocity, or the sidewash,
is determined by a lateral curve fit and subsequent differentiation of the
velocity potential. The process is the same whether the sidewash is due to cam-
ber 1ift, flat-plate lift, or thickness. 1In the following discussion of lateral
velocity evaluation, v can be considered to represent either Av,, Avg, or
vi¢, and ¢ can be considered to represent either ¢o, ¢g or ¢4. The first
step in the determination of lateral velocities is the identification of the
nearest leading edge inboard or outboard of the midpoint of the element under
consideration (illustrated in sketch (e)). The program contains the necessary

Sketch (e)

logic for identification of all intersections of the leading edge with the

X = Constant line and for selection of the nearest point. When, as in

sketch (e), the nearest leading-edge point lies to the right, a least-squares
curve fit of an equation of the form ¢ = $1o + k1J§7 + koy' + k3(y')2 can be
applied to the velocity potential data, and the lateral velocity is found from
the derivative equation

3 1 Ky
v=—==— + kg + 2k3y'

ay 2 \y"

A typical application is illustrated in sketch (£). Normally five points are
used in the curve fit: the element in question and two on each side. Special
provisions are made when there are less than five full elements within the wing
planform limits. For example, when a leading-edge element is included, its mid-
point ¢ wvalue is excluded, and the local leading~edge ¢ value and its y!
position are substituted. The curve fit just described is applicable for three
or more points; when only two points are available, a linear equation curve fit
is imposed. 1In the very special case, where only a single leading-edge element
is present (as in the apex region of a wing with a highly swept leading edge),
the lateral velocity may be approximated as u/cot A;,. When the nearest
leading-edge point lies to the left, the process is the same except for the
change in direction of the y' measurement.

12



Element
centroid

y'

Sketch (f)

Combination of separate contributions.- Local velocities on the wing sur-
face can be found by direct addition of the velocity contributions:

Upper surface Lower surface
Aug,  ADug Aus  Aug
u=u + — +—0 u=u- — - —20 (10)
2 2 2 2
Ave Avg Avo  Avg
v=vg t— +—a V=V - — - —2a (11)
2 2 2 2

Linearized-theory local pressure coefficients are evaluated by the simple
formula Cp = -2u,]

Wing overall forces and moments could be found by suitable numerical inte-
grations performed separately for each angle of attack under consideration. It
is more economical, however, to use the linear nature of the solution in compu-

lother more complex linearized-theory formulations involving both u
and v perturbation velocities offer no advantage over the simpler approach,
Some examples are shown in reference 6. Many linearized-theory numerical
methods, in fact, do not provide for evaluation of lateral velocities.

13



tation of mutual interference drag coefficients between the cambered and flat
surfaces (discussed in ref. 1, for example).

Estimation of Nonlinear Effects

In development of this system for estimation of nonlinear supersonic aero-
dynamics, an attempt has been made to correct for the major deficiencies of
linearized~theory methods. The first deficiency is in the prediction of basic
attached-flow pressure distributions, Generally, linearized-theory methods
tend to underestimate loadings in the region of the wing root and to overesti-
mate loadings near the wing tip. Another source of error is the inability of
linearized-theory methods to provide realistic estimates of either the leading-
edge thrust forces that may actually be realized or of the vortex forces that
appear when thrust is not developed. Methods of correcting linearized-theory
solutions to account for these nonlinear effects are discussed next.

Nonlinear pressures in attached flow.—- The method employed here for the
estimation of pressure loading nonlinearities is basically that presented in
reference 6. There are, however, some significant differences that should be
discussed. For completeness, the whole process is outlined.

This method uses a pressure~coefficient formulation which combines the
more exact, two-dimensional, interference-free prediction capabilities of
the shock-expansion relationships with the linearized-theory capabilities for
handling of three—dlmen51onal interference effects. In brief, a local pres-
sure coefficient Cp a 1is calculated in accordance with the shock-expansion
relationships for an effective deflection angle s* This effective deflection
angle includes a purely geometric component (based on the local surface slope
relative to the free stream) and an aerodynamic interference component (based
on local interference velocities evaluated by linearized-theory methods).

A typical variation of the pressure coefficient Cg,a with the effective

deflection angle 8* is shown in sketch (g). The pertinent equations are
= /I.—CP,CS:gO
//C
P,6S
* 65
Cp,a
//<L-Linearized theory
J
6*
Sketch (g)
14



given in the appendix of reference 6. At the point labeled &g, the flow on
the deflected surface becomes sonic.2 For ¢* values greater than &g, ho
valid solution can be found because the problem then involves a mixed super-
sonic and subsonic flow, and neither supersonic linearized-theory nor shock-
expansion relationships are applicable. Because only a small portion of the
flow may be affected in many cases, calculations for the examples shown in

this report were not terminated when &* became larger than §g. 1Instead, an
arbitrary linear fairing between the pressure coefficient for sonic flow CP;GS

and the pressure coefficient corresponding to the stagnation pressure behind a
normal shock C ,8=90 Wwas introduced. Thus, present method solutions for
cases in which Ehe local surface angles exceed the sonic flow deflection angle
over an appreciable portion of the wing may be suspect.

In order to determine the effective deflection angle, a local linearized~
theory Mach number Mj, which includes interference effects, and a local
linearized-theory Mach number M,, which would be generated on a two-~dimensional
surface having the same slope, must be defined. The difference between these
two Mach numbers provides a measure of the magnitude of three-dimensional inter-
ference effects given by the linearized-theory solution. The local Mach numbers
are determined from the linearized-theory perturbation velocities:

Mo

M_(1 + ug)

M_(1 + uj)¥1 + v2

Linearized-theory longitudinal perturbation velocities may range from positive
to negative infinities. Since local Mach numbers could realistically become
very large, the positive infinity limit is acceptable. However, local Mach
numbers less than 0 are believed to be unrealistic; therefore, negative longi-
tudinal perturbation velocities are adjusted to give a lower limit of -1 corre-
sponding to a local Mach number of 0. The adjustment is illustrated in

sketch (h). The velocities uj; and u, are the corrected values used in local
Mach number definition, and the velocity u is the nonadjusted value given by
linearized theory. For positive values of u, uj or uy, = u. For negative
values of u,

M;

2
uj or g =1 - ————— (12)

1 2
+ 1
1 - u

21n reference 6, this point was labeled &3 and described as the angle
for shock detachment; however, the equation given in that report is actually
that for sonic flow. The sonic flow condition is probably a better indication
of the limit of solution validity than is the shock detachment angle. Therefore,
the sonic flow point §g is adopted for the present method, and the incorrectly
labeled equation from reference 6 is retained. The sonic flow angles are less
than the shock detachment angle, but the differences are small,

15



u, or u
1 (o] 0

--00 S

Sketch (h)

For all values of v, v; =v. In determination of u; and Mj;, u and

v values are those provided by the linearized-theory wing program. 1In deter-
mination of uy and My, u is given by the linearized-theory two-dimensional
expression:

AL (13)

The aerodynamic interference component of the effective deflection angle is
determined fram the Prandtl-Meyer expansion relationship between the expansion
angle and the local Mach number:

M2 - 1
Vo= \/g tan™] -—6—-— - cos™! (;4) (14)

For the expansion angle V; corresponding to the local flow solution with
interference, Mj 1is used as M in equation (14). For the interference-free
expansion angle Vo M, 1is used., The aerodynamic interference component of
the effective deflection angle A; is then simply Vg - Vij. The determination
of Aj for a sample case is illustrated in sketch (i),

When the local Mach numbers M, or M; become less than 1, the Prandtl-

Meyer expansion equations are no longer applicable; and without special provi-
sions, the whole calculation process would have to be terminated. Therefore,

16
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Sketch (i)

provision has been made to provide fictitious expansion angles for local Mach
numbers less than 1 so that the process may continue. For M, and Mj less
than 1, the expansion angles are defined by

V= (V- 90)(1 - M)?2 (15)

Normally, this provision is not employed unless the local surface slope exceeds
by an appreciable margin the sonic flow angle &g for the free-stream Mach
number. The assumed relationship for local Mach numbers less than 1 is shown
as a dashed line in sketch (i).

As just described, the interference component of the effective deflec-

tion is added to the purely geometric component to find the complete effective
deflection angle:

¥ = A+ Ay = A+ vy - vy (16)

where A 1is the angle in the x~z plane between a tangent to the local surface
and the free-stream velocity vector. As noted previously, this effective
deflection angle is then used in shock expansion expressions to define a pres-
sure coefficient AC",a which has been corrected for nonlinear effects. This
completes the description of the method as presented in reference 6.

Correlations of the corrected pressure coefficient with experimental data
presented in reference 6 showed that the corrected pressure coefficient pro-
vided a much improved prediction of local pressure distributions at high super-

17



sonic Mach numbers and large angles of attack. For low supersonic Mach numbers
and moderate angles of attack, the differences between the new method and con-
ventional linearized-theory results were relatively small. Contrary to expec-
tations, however, it was found that the smaller the magnitude of the pressure
coefficient, the more likely that conventional linearized theory would give a
better prediction. Therefore, in order to provide a more uniformly valid
improvement over linearized theory, a modification to the method of reference 6
has been introduced. The objective is to provide a better merging of the two
methods.

As shown in sketch (g), C;'a =0 for & of zero. 1In addition, the

derivative *'a/BG* at & =0 is equal to the linearized-theory value
of 27/180B. However, the variation of Vv with M as depicted in sketch (j)

150
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Sketch (Jj)

also influences the merging of the two methods. The present method results
converge with linearized-theory results for small values of the perturbation
velocities only if M; equals M, (the two-dimensional case) or if the deriv-
ative 9v/0M satisfies the linearized-theory condition

v B 180
_— — (17)
M M, T

This consideration led to the development of what has been termed a small-
disturbance formulation of the nonlinear method. (The previously described
method taken from ref. 6 is considered the large-disturbance formulation.)
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A modified variation of the expansion angle VvV with the local Mach number
to be used in the small-disturbance formulation is illustrated in sketch (j).
For M greater than M, the curve has the following form:

1 1 \2
v = 130.45 + k; + k2 (18)
1+ M T+ M

For M less than M,, the curve has the form

V] k ! ! 2 + k ! ! > (19)
! 2 1 +M 2 2 1+ M

The constants are selected to pass the curve through the point at M, with the
linearized-theory slope. The small-disturbance formulation pressure coefficient
is obtained when this curve, rather than that depicted in sketch (i), is used to
define Aj;. For comparison, the large~disturbance formulation from sketch (i)
is shown as a dashed line in sketch (Jj).

In the final formulation for the pressure coefficient used in the present
method, a compramise has been made between the small- and large-disturbance
formulations. The compromise provides a weighting toward the small-angle formu-
lation when the local surface angle is small (when M, approaches M_) and when
the interference effects are small (M; approaches Mg). For this purpose, the
expansion angle is defined as

V = Vg + k(M) (Vgq - Viq) (20)

where

k(M) = k(Mg) k(Mj)

The form of the expressions for k(My) and Kk(Mj) are shown in sketch (k) on
page 20.

For My 1less than M_,

1 1 €
T+M, 1 +M,
k(Mg) = cos?|90° ] ; (21)
2 1+ M
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For M, dgreater than M,,
1 1 €
T+M T+ M,
k(My) = cos? |90° 1 (22)
1T+ M
For My 1less than Mg,
1 1 €
1 +M; 1T+ M
k(M;) = cos? |90° (23)

1 1
2 T+ My
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For M; greater than M,

k(Mj) = cos2 |90° (24)

An example of the final compromise form of the expansion angle dependence on
local Mach numbers is depicted in sketch (1). The expression used for Vv in

1.0 M

k(M) .5

0 ] l J
1 1.4 2 3 5 11 oo

150
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Sketch (1)

the present system, the solid line, is compared with the small- and large-
disturbance limits represented by the dashed lines. The exponent e in equa-
tions (21) to (24) was determined by trial and error in comparisons of predic-
tions with experimental data. The value of the exponent used is given by

0.45 7 s
= +
© M <M2-1)4 (22)
0
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As might be expected, the final solution is not overly sensitive to variations.
in the value of e. However, it was found to be important that e approach
infinity as the Mach number approached 1 so that the solution would tend toward
the small-disturbance formulation.

Nonlinear pressures in vortex flow.- An additional source of nonlinearities
is associated with the phenomena of leading-edge thrust and the detached
leading-edge vortex system that forms when leading-edge thrust fails to develop.
Prediction of theoretical leading-edge thrust c; is discussed in an earlier
section of this paper. A method for estimating the portion of this thrust that
actually may be attained c: is described in references 8 and 9. This method
has been incorporated in the present system but will not be presented here
because it is covered in much detail in the references cited.

For wings with sharp leading edges, for which no leading-edge thrust is
assumed to develop, Polhamus (ref. 10) established a relationship between the
normal force induced by the separated vortex flow and the theoretical leading-
edge thrust. According to the Polhamus suction analogy, the suction vector
cy/cos Ay, is assumed to rotate to a position normal to the wing surface, where
it affects the normal force rather than the chord force. Because the present
method treats a partially developed leading-edge thrust, it seems logical to
consider a partial development of the vortex force. The simplest approach is
to equate the vortex force with the undeveloped thrust:

¥
Ct - Ct (26)

Cv
cos Aja

This treatment differs from the approach of reference 8, which postulates a
gradual rotation of the thrust vector. The present scheme provides a simpler
way of handling thrust and vortex forces for wings with twist and camber.

The suction analogy provides no information on the point of application of
the vortex force vector. There is an implied assumption that it acts just
behind the leading edge. Since the vortex flow field can act at locations which
under some conditions may be far removed from the leading edge, accurate esti-
mates of the vortex-induced normal force, and particularly of the pitching
moment, can be made only with some knowledge of the location of the vortex flow
field.

For the special case of wings designed for supersonic cruise and operating
at supersonic speeds, a simple empirical relationship (shown in fig. 2) may be
used to provide an approximate location for the vortex action line. This case
is simplified because wings designed for supersonic cruise tend to approach
delta planforms and because delta wings at supersonic speeds display a conical
flow field. Delta wing data from references 11 and 12 were used to define the
location of the vortex center. The data provided no discernible evidence of
trends with the other parameters ~ Mach number and sweep angle.. However, the
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data exhibited a considerable. amount of scatter, indicating an obvious need .for
an improved correlation based on a larger amount of more accurate experimental
data. The curve fit shown in the figure is given by

cot AV 1

— = (27)
cQt-AZe 1+ 2.7 tan o

A very simplified approach has.been .used to provide an approximation for
the vortex force distribution (illustrated in sketch (m)). At a given wing

s>

*
Cp,v

Sketch (m)

spanwise station, the local leading-edge sweep angle is defined by a line tan-
gent to the leading edge. The center of the vortex field is assumed to be
above the point

‘ v cot Aje y
X} = _ ~ 1 = ———(2.7 tan Q) (28)
cot Mg \COt Ay cot Ajq

The pressure distribution supporting the vortex force is assumed to have the
form shown in the sketch and to be represented by the equation

Cave

ACp,v = cy

Xy

xl
cos2| 901 + — . (29)
Xy !



This provision allows the vortex force to be represented by an incremental pres-
sure distribution to be added directly to the basic attached-flow pressure dis-
tributions. 1In this way, any loss in vortex force due to vortex field location
behind the wing trailing edge or due to local pressures exceeding the vacuum
limit may be taken into account.

The present method for estimation of attainable leading-edge thrust has
been developed for flat wings with symmetrical sections, However, the method
is adaptable to wings with limited twist and camber when it is coupled with
lifting-surface programs capable of providing accurate theoretical leading-edge
thrust distributions. Sketch (n) illustrates this application. Since the air-

Airfoil assumed for
leading-edge thrust

t Airfoil

Sketch (n)

foil profile in the immediate vicinity of the leading edge has a dominant influ-
ence on the thrust characteristics, the attainable thrust may be analyzed by
calculations for a comparable symmetric wing section. This section has a plane
of symmetry which is tangent to the mean camber surface of the nonsymmetrical
section at the leading edge. The superimposed symmetrical section is assumed to
have the same thickness ratio, leading-edge radius, and location of maximum
thickness as the cambered section. The thrust vector is assumed to act at an
angle with respect to the wing-chord plane defined by the tangent to the camber
surface at the leading edge. The vortex force is assumed to act on the surface
of the airfoil section in accordance with the pressure distribution previously
discussed. Thus, for a cambered wing, the vortex force could contribute to

the chord force as well as to the normal force and pitching moment. For the
cambered wing section, Xy is defined as

x) = —2—[2.7 tan (@ - azp)] (30)
cot Ao

If a is less than Qji, the vortex pressures are allowed to act on the lower
rather than on the upper surface of the airfoil section.
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Because of limitations in the generality of this empirical method for han-
dling vortex—-induced pressures, it cannot be used with any confidence for wings
which depart substantially from delta planforms3'nor_for wings which employ more
than a modest degree of twist and camber.

Computer Program

A computer program entitled "Supersonic Wing Nonlinear Aerodynamics," which
combines the linearized-theory wing solution with the methods for estimation of
nonlinear effects presented here, may be obtained at a nominal fee from

Computer Software Management and Information Center (COSMIC)
112 Barrow Hall

University of Georgia

Athens, Georgia 30602

(404) 542-3265

Request the program by the designation LAI 12788. The program is written in
FORTRAN IV for use on the Control Data 6600 series of computers and requires
approximately 130 000 octal locations of core storage.

Data are input in namelist form under the code INPT1. The wing planform
information is specified by a series of leading- and trailing—-edge breakpoints.
Up to 21 pairs of coordinates may be used to describe the leading edge and up
to 21 pairs to describe the trailing edge. The planform input data in program
terminology are

NLEY number of leading-edge breakpoints (limit of 20)

TBLEY table of leading-edge y-values in increasing order of y from wing
root to wing tip

TBLEX table of leading-edge x~values corresponding to the TBLEY table
NTEY number of trailing—edge breakpoints (limit of 20)
TBTEY table of trailing-edge y-values in increasing order of y from wing

root to wing tip
TBTEX table of trailing—-edge x-values corresponding to the TBTEY table

XMAX largest x-ordinate occurring anywhere on the planform

3For wings which depart drastically from a delta planform (swept—-forward
wings, for example), only the vortex loadings are improperly treated; all other
loadings, including the leading-edge thrust, are handled properly. Program
data provide sufficient information so that the vortex flow increments may be
excluded from the pressure distributions and overall forces and moments, if
desired.
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SREF wing reference area for use in aerodynamic force and moment

coefficients
CBAR wing reference chord for use in aerodynamic moment coefficients
XM x-location of mament reference center

The size of the wing in program dimensions is controlled by the entry:

JBYMAX integer designating the number of elements in the spanwise direction
{see fig. 1) (limit of 101)

The necessary scaling is done within the program by use of a scale factor
2(JBYMAX - 0.5)/(SPAN x BETA). The number of elements N corresponding to a
given JBYMAX or the value of JBYMAX corresponding to a given number of elements
may be approximated as

JBYMAX = ({1 + 4AN - 1)/2A
N = A x JBYMAX? + JBYMAX
where

2 SREF

SPANZ BETA

The program has been written to accommodate 2000 elements. Except in very
special cases the JBYMAX integer will be much less than the limit of 101. The
normal range is 30 to 40, If the selected JBYMAX is too large for the allow-
able 2000 elements, program logic will determine the largest usable value and
make a substitution.

The wing section mean camber surface and the wing section thickness must
be specified by exactly 26 chordwise ordinates at up to 21 span stations. When
fewer than 26 camber or thickness coordinates are used to define the sections,
the ordinate tables must be filled with enough zeros to complete the list of 26.
The camber and thickness spanwise location of sections need not be the same.
The necessary section information is

NYC number of spanwise stations at which chordwise sections are used to
define the mean and camber surface (limit of 21)

TBYC table of y-values for the chordwise camber surface sections, increas-
ing order of y from root to tip
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NPCTC number of chordwise stations used in mean camber surface definition
. (limit of 26)

TBPCTC table of chordwise stations, in percent of chord, at which mean cam-
ber surface ordinates are defined; in increasing order from leading
to trailing edge

TZ0RDC table of mean camber surface z-ordinates corresponding to the TBPCTC
table; the full 26 values for the root chord (including zeros for
values in excess of NPCTC) are given first, followed by similar
information for all spanwise stations in increasing order of vy

NYT number of spanwise stations at which chordwise sections are used to
define the thickness distribution (limit of 21)

TBYT table of y-values for the chordwise thickness distribution sections,
increasing order of y from root to tip

NPCTT number of chordwise stations used in thickness distribution defini-
tion (limit of 26)

TBPCTT table of chordwise stations, in percent of chord, at which thickness
distribution ordinates are defined; increasing order from leading
to trailing edge

TZORDT table of thickness distribution z~ordinates as a fraction of local
chord (full, not half-thickness) corresponding to the TBPCTT table;
the full 26 values for the root chord (including zeros for values
in excess of NPCTT) are given first, followed by similar informa-
tion for all spanwise stations in increasing order of vy

The TZORDC table may be multiplied by a scale factor TZSCALE if desired. This
may be useful if the original tabulated ordinates are nondimensionalized with
respect to a single measurement (the wing root chord, for example) or if it is
necessary to evaluate the effect of a change in camber surface severity.

The following wing section information is required for the calculation of
attainable leading-edge thrust. Data are required for the same span stations
TBYT used in definition of the wing section thickness distribution

TBTOC table of airfoil maximum thickness as a fraction of the chord

TBETA table of n, the section location of maximum thickness as a fraction
of the chord

TBROC table of the leading-edge radius as a fraction of the chord
For wing sections with theoretically sharp leading edges (circular-arc sec-

tions, for example), it may be desirable to estimate a leading-~edge radius which
is constant along the entire leading edge. 1In this case, a single entry RLE is
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made, and the TBROC table is preempted. The test or flight conditions are
specified as

p: (i free-stream Mach number

RN free~stream Reynolds number (based on ¢) in millions, R/106
NALPHA number of angles of attack to be calculated (limit of 20)
TALPHA table of angles of attack to be calculated

One of three options for printing results may be selected by choice of the
IPRINT entry:

IPRINT 1 only the overall force and moment coefficients are printed

IPRINT = 2 in addition to the overall force and mament coefficients, section
coefficient distributions are printed for a selected series of
angles of attack

3 in addition to the overall force and moment coefficients, pressure
distributions are given for selected angles of attack (as in
IPRINT = 2) and for specified span stations

IPRINT

NALPHP number of angles (limit of 20)

TALPHP table of angles (must correspond to TALPHA entries)

NJBYP nunber of span stations

JBYP table of span stations identified by integers from 1 to JBYMAX
Y JBYP - 1

b/2 JBYMAX - 0.5

COMPARISONS WITH EXPERIMENTAL DATA

The applicability of the present method to practical problems (the esti-
mation of pressure loadings and aerodynamic force and moment coefficients, for
example) can be assessed by means of a series of comparisons of predictions
with the experimental measurements presented in figures 3 to 16. 1In these fig-
ures, the curves labeled "Present method" have been obtained by use of the
computer program described in the section of this paper entitled "Camputec¢ Pro-
gram." The computer program is based on theoretical concepts discussed in the
section "Development of Camputational System."™ Estimates based on conventional
linearized theory are also shown for camparison. Linearized-theory results were
obtained from the same computer program.

Since the present method provides detailed thickness pressure distributions

over the surface of the wing, the wave drag contribution to Cp,, for an uncam-
bered wing at 0° angle of attack could be found by integration. However, for
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wings with rounded leading-edge sections, this numerical method may not provide
a sufficiently accurate estimate of this drag for a normal grid size (number of
elements) to give a reasonably accurate prediction of 1lift effects. Further-
more, the present method does not account for the contribution to Cp,, of
other configuration components and their mutual interference. Therefore, a gen-
eral practice of combining estimates of lift-generated characteristics given by
the present method with estimates of thickness-generated characteristics given
by other methods (refs. 2 to 4, for example) is recommended. For the compari-
sons with experimental data shown in this report, experimental values of Cp,o
were used in place of the program—generated CD,o' Where comparisons were made
for a series of twisted and cambered wings, Cp,o Wwas determined from experi-
mental data for the flat wing only, so that predictions of drag variations with
camber surface severity or design lift coefficient are those given by the pres-
ent method.

A comparison of predicted and measured pressure distributions (refs. 13
and 14) for an uncambered semispan delta wing of aspect ratio 2 is shown in fig-
ure 3. First, note the data for M = 1.45. For this Mach number, the deflec-
tion angle for sonic flow is 10.37°9; thus the 20° angle of attack is far too
large for a reasonable expectation of good agreement between prediction and mea-—
surement., For all of the wing lower surface ahead of the break in the present
method curve, local Mach numbers M; of less than 1 are indicated. Of course,
the presence of such a large region of subsonic flow invalidates any solution
given by methods which assume all supersonic flow. This is really a mixed or
transonic flow problem. The present method prediction ahead of the breakpoint
results from an arbitrary description of CB vs 6* as discussed in the sec-
tion entitled "Development of Computational System." For M = 1.97, the sonic
flow angle is 22.179; thus, the 20° angle-of-attack data (shown in fig. 3 (b))
are near the upper limit of applicability.

Within the range of applicability, data for all the Mach numbers described
by figure 3 indicate that a generally improved prediction of wing pressure dis-
tribution is offered by the present method. Improvements in prediction of load-
ings on the wing undersurface near the root chord are particularly noticeable.
The new method also tends to avoid the overestimation of pressure loadings in
the wing leading-edge and tip regions. And, although agreement is far from
exact, the program-predicted incremental loading due to the detached vortex
flow field does appear to provide a better estimate of upper surface loadings
than does the linearized theory. Of particular significance is the provision
within the present method for the loss in suction force when the vortex core
nears and moves behind the wing trailing edge. Note the changing patterns of
the upper surface pressure distributions of a given angle of attack as the span
station increases. The suction force would tend to increase linearly with
increasing span position if the spreading of the pressure distribution incre-
ments were not taken into account.

Data from references 13 and 14 were used in a "“calibration™ of the present
method. 1In the section "Development of Computational System," two formulations
of the present method were discussed. The large-disturbance formulation is
identical to that of reference 6. The small-disturbance formulation was intro-
duced to provide a better estimate for small angles of attack and low supersonic
Mach numbers. For very small disturbances, the small-disturbance formulation
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gives results identical to those provided by linearized theory. The present
method uses a mixture of small- and large-disturbance formulations to provide

a transition from linearized-theory estimates to those given by the large-
disturbance formulation of reference 6, as the Mach number and the local distur-
bance effects increase. The small- and large~disturbance limits and the chosen
transition are illustrated in figure 4. Wing lower surface pressures are shown
as a function of angle of attack for several representative locations. In view
of the relatively small differences between the limits, the process resembles a
"fine tuning” operation. At M_ = 1.45, the small-disturbance formulation pre-
dominates. At the highest Mach number, the large-disturbance formulation is
favored. This figure depicts quite clearly the nonlinear nature of supersonic
wing pressure variations with angle of attack.

Pressure data (ref. 15) for an uncambered delta wing with a leading-edge
sweep angle of 76° are shown in figure 5. The model from which the experimen-
tal data were obtained had a small fuselage which served as a balance housing.
For this analysis, wing section ordinates in the vicinity of the root chord were
altered to approximate the fuselage area distribution. Generally, the new
method works as well for this wing as it did for the aspect-ratio-~2 wing with
its 63.43° leading-edge sweep. Data for this wing at M_=2.3 and a = 19.94°
illustrate how the vacuum limit in addition to the pressure distribution spread-
ing tends to limit the vortex contribution. The present method predicts pres-
sures which approach the vacuum pressure limit —2/yM2 for the leading edge of
both lower and upper surface at M_ = 2.3 and M_ = 3.5. This indicates the
large influence of the wing sidewash for wings with subsonic leading edges, an
effect which seems to be overestimated at the largest angle of attack.

Force data for the 76° swept leading-edge wing (from ref. 15) are shown in
figure 6. As mentioned previously, the theoretical drag coefficients (and
axial-force coefficients) are matched to the experimental data at a = 0°. For
all the coefficients, differences among linearized-theory results, the present
method, and the experimental data are small. For uncambered delta wings, lin-
earized theory has been observed to provide reasonable estimates of overall
forces and moments in spite of occasional large discrepancies in local loadings.
Where differences between linearized theory and the present method occur, the
present method is generally in better agreement with the experimental data.

The next set of data to be examined is for a series of arrow wings with
differing degrees of camber surface severity. The arrow-wing planform offers
an opportunity to compare experiment and theory for a case in which linearized
theory fails in pitching-moment prediction. The camber surface or design lift-
coefficient series offers an opportunity to explore a situation in which the
linearized theory fails to assess the drag penalties associated with camber
surfaces having large variations in local slope.

Pressure data (ref. 16) for a series of 70° swept leading-edge arrow wings
with design lift coefficients of 0, 0.08, and 0.16 for M _ = 2.05 are shown in
figure 7. The angle-of-attack range covered by these data is small compared
with that of the previous data, and thus, significant differences between the
present method and linearized theory occur primarily at the outboard wing sta-
tions. There, the prediction given by the new method provides a better estimate
of the pressure loadings than does the linearized theory.
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Force data (ref. 17) for the same series of wings are shown in figure 8.
For the uncambered wing (fig. 8(a)), the present system provides a better esti-
mate of the axial force, the normal force, and the pitching moment. Samewhat
surprisingly, this does not result in a necessarily improved prediction of the
drag or the lift-drag ratio. However, the differences between the linearized
theory, the present method, and the experimental data are small. For the cam
bered wings, and particularly for the Cp p = 0.16 wing, the present method
provides an improvement in prediction of all the coefficients, except possibly
Ca. 1In assessment of the apparent Cp discrepancies, possible experimental
sources of error must be considered. The test models were half-span wings
mounted on a boundary-layer—-bypass plate with a gap between the plate and the
wing except at the point of attachment to the balance. Because of the nature
of the force distribution, as indicated by sketch (o), a leakage through the
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Sketch (o)

gap could cause a sizable decrease in axial force without an appreciable effect
on the normal force. Some simple calculations in which such a loss in axial
force is assumed to be concentrated at the root chord show a negligible effect
on the lift-drag polar and the lift-drag ratio. The lift-drag polars and the
lift~-drag ratio plots in the three parts of figure 8 show the capability of the
new method to predict with reasonable accuracy the drag penalties of increasing
camber surface severity, Thus, this system could be used in design by iteration
procedures to select optimum design coefficients, information heretofore avail-
able only through wind-tunnel experimentation.

In spite of the theoretically sharp leading edges of these wings (3-percent-
circular-arc sections), there is evidence of a small amount of leading-edge
thrust. An assumed leading-edge radius of 0.06 mm (0.4 percent of the wing root
chord maximum thickness) along the entire leading edge was found to be sufficient
to explain the difference between the experimental and theoretical axial forces
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for the flat wing. Estimation of effective leading-edge radii for theoretically
'sharp leading~edge wing sections poses a difficult problem.

Data from reference 18 for a series of twisted and cambered wings covering
a range of leading-edge sweep angles are shown in figures 9 to 11. Generally,
the present method gives an improved prediction over linearized theory for all
the aerodynamic force and moment coefficients. The new method shows poorest
performance for the highly twisted and cambered wing with the 75.96° swept
leading edge, where the axial force is uniformly overestimated by about 0.0015

(fig. 9(c)).

Figure 12 permits a comparison of the predicted and measured variation of
the maximum lift-drag ratio and the pitching-moment coefficient at zero 1lift
with the wing design lift coefficient. These data illustrate the use of the
newer system in the selection of design lift coefficient (camber surface sever-
ity) for maximization of performance benefits. Only for the 75.96° swept wing
(B cot A = 0.6) is the present method misleading. Here an optimum design lift
coefficient of about 0.03 or 0.04 is indicated, whereas the experimental opti-
mum is probably about 0.06.

The effect of camber surface severity on the aerodynamic performance of
a 70° swept leading-edge arrow wing and a 75° swept leading-edge arrow wing is
shown in figures 13 and 14. The data for the design condition M = 2.05 are
taken from reference 17. The data for the off-design Mach numbers of 1.61
and 2.20 are from reference 19. The differences between the maximum lift-drag
ratios predicted by the linearized theory and those predicted by the present
method are shown to be quite large; in general, the present method predicts the
measured variation with design lift coefficient reasonably well.

A similar plot for data from reference 15 is shown in figure 15. Here,
the design condition is M_ = 3.5 and the off-design conditions are M = 2.3
and M_ = 4.6. For the design condition and for the higher Mach number, wing
twist and camber offers little or no benefit except as a means of moment con-
trol. For the lower Mach number, there is a small improvement in (L/D)pax
for Cp,p = 0.05. These trends are shown to be represented with reasonable
accuracy by the present method. The experimental pitching moment for the
0.05 design lift-coefficient wing at all three Mach numbers is believed to be

an error.

Taken as a whole, the data of figures 12 to 15 illustrate the decreasing
effectiveness of twist and camber in aerodynamic performance optimization as
the Mach number increases. These data also demonstrate the inability of basic
linearized-theory methods to provide valid information for the selection of
the design parameters, a need which is met to a much higher degree by the pres-
ent method.

Force coefficient data from reference 20 for a wing-body configuration
which displays evidence of appreciable leading-edge thrust are shown in fig-
ure 16. The aspect-ratio-2 uncambered wing has a 5-percent-thick NACA 0005-63
section with a leading~edge radius of 5.6 percent of the section maximum thick-
ness. The amount of leading-edge thrust achieved, as indicated by the axial~
force coefficient, is predicted with reasonable accuracy by the present method.
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The present-method curve labeled "No thrust" indicates the axial force predicted
by the present method when the leading-edge thrust force is ignored, and Cp is
determined only from program-calculated pressures acting on the wing upper and
lower surfaces. Results from linearized theory for full thrust and no thrust
show the large theoretical performance differences due to the thrust phenomenon.
The present-method curves for Cp, Cp, and L/D indicate a gradual transition
from nearly full thrust below about 3° to smaller and smaller fractions of the
full thrust as angle of attack increases. The M_= 1.3 data are at about the
lower Mach number limit for practical application of the method. Here, the
deflection angle for sonic flow is 6.32°,

In the next comparison of theory and experiment, a very generalized case
is treated. The wing for this example had an arbitrary planform with a curved
leading edge and employed a twisted and cambered mean lifting surface. In addi-
tion, the wing sections had a rounded leading edge, so that some degree of
leading-edge thrust could be expected where the local leading edge is subsonic.
In figure 17, experimental data for this wing (ref. 21) are compared with pre-
dictions given by the present method. Generally, the nonlinear prediction
method agrees well with the experimental data. Of particular interest are the
nonlinearities in the axial force and the pitching moment, As indicated by the
axial force, this model displays significant leading-edge thrust, somewhat more
than is predicted by the present method. The implications of this phenomenon
for the design of high-performance wings for supersonic cruise are discussed in
reference 22,

The final comparison of theory and experiment is for a high-efficiency
supersonic cruise configuration that has been seriously considered in the
National Supersonic Transport Program. Data from reference 23 for a wing-body
version of this configuration are shown in figure 18. For the program repre-
sentation, the fuselage and the wing were considered as a single unit. As shown
in the schematic semispan representation in sketch (p), the fuselage, as well as

~Sketch (p)

33



the wing, was used in definition of the wing planform and the chordwise thick-
ness and camber distributions. In this comparison, Cp,, (0.0074) was esti-
mated by the linearized-theory methods of reference 2, and if that value is
correct, this example provides a test of the ability of the present method to
predict camber drag, As shown in figure 18, the present method gives a much
improved estimate of the moment characteristics relative to linearized theory;
however, the estimate of the drag and the lift-drag ratio leave something to

be desired. The error is clearly due to the axial-force estimate, in which

the camber drag is overestimated. This configuration is a quite complex wing-
fuselage arrangement with a considerable amount of favorable mutual interaction
for both volume and lift. The geometry used in the analysis (sketch (q)) may

Configuration front view

y
b/2
Sketch (q)

be incapable of adequately accounting for some of the design subtleties. For
this configuration, with a fuselage extending well forward and aft of the wing
itself, the strategy of considering wing and fuselage as a unit did, however,
offer some improvements over a wing-alone treatment (not shown here), a better
moment correlation, and a 0.13 increase in (L/D)paxs for example. The domi-
nance of fuselage and wing-root-chord region in the axial-force distribution
for 09 angle of attack is shown in sketch (q). The use of the present-method
correction schemes in conjunction with the more accurate surface panel
linearized-theory methods now being developed might offer a solution to this
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problem. For such an application, it might be necessary to base the pressure
correction for the fuselage on a tangent conical surface rather than on the
tangent plane surface as used here for the wing.

The present study has led to some observations on wing design philosophy.
It has been the practice to design wing lifting surfaces by use of linearized-
theory methods such as those of reference 1. Some allowance is usually made
for the inability of linearized theory to assess camber surface drag penalties
adequately. For example, a design lift coefficient of about eight-tenths of
the estimated cruise lift coefficient was used for the configuration of fig-
ure 18. However, no rational basis other than "rule of thumb" for selection
of camber surface severity for performance optimization exists. In addition,
it has been the practice to discount the possibility of any attainment of
leading-edge thrust, a factor which also has a bearing on the choice of design
1lift coefficient,.

Figure 19 helps to illustrate how the present method of estimation can be
used as an aid in the choice of the camber surface. Maximum lift-drag ratios
are shown as a function of design lift coefficient for both wind-tunnel and
assumed flight conditions. Linearized-theory estimates are shown at the top
of the figure and present-method estimates at the center and bottom.

If only linearized theory were available as a guide for selection of the
design parameter, the choice would clearly be a design lift coefficient equal
to the cruise 1lift coefficient. Only rules of thumb based on wind-tunnel
experience give lower values which may approach the real optimum. The present
method, on the other hand, indicates a design lift coefficient of about 0.04
to 0.05 for optimization of cruise efficiency if leading-edge thrust is dis-
counted and a value of about 0.02 to 0.03 for the estimated attainable thrust.
It also predicts a much less sensitive dependence of the maximum lift-drag
ratio on the design lift coefficient. Both a more realistic estimate of the
camber drag penalties and a consideration of attainable thrust benefits tend
to favor milder camber surfaces approaching the uncambered or flat wing.

Now, given the situation in which some limited experimental data are avail-
able, as in the case here, the present-method camber surface penalties for this
configuration are shown to be too severe. The present-method curve, however,
may be useful in providing an estimate of the variation of the actual lift-~drag
ratio (assumed to be represented by the experimental data and an extrapolation
thereof) with the camber surface severity. First, it is assumed that the max-
imum lift-drag ratio for the flat wing (Cy,p = 0) is predicted with reasonable
accuracy. Then, a reasonable estimate of the variation between these points may
be made by adjusting or rotating the present-method curve to pass through both
points. This adjustment appears to be justified by an examination of the exper-
imental theoretical correlations of figures 12 to 15. This estimated variation
of attainable lift-drag ratio with design lift coefficient indicates that an
improvement in (L/D)pax ©f 0.12 in the wind tunnel and 0.20 in flight could
result from a reduction in design 1ift coefficient from 0.08 to about 0.04 to
0.05. The maximum lift-drag ratio for this milder camber surface occurs at a
lift coefficient very close to the anticipated cruise lift coefficient of 0.10.
The resultant reduction in root chord@ angle of attack and cabin floor angle
would also be beneficial. Trim drag considerations, however, might prevent

35



taking full advantage of the reduced camber surface severity. In consider-
ation of the moment characteristics in trade-off studies, the present method,
with its improved estimates of pitching moments, would obviously be helpful.

Although a fuselage may be treated as part of a more generalized wing
shape, the method as formulated here is basically a wing-alone program. For
more complete configurations, results from this method must be combined with
results from established linearized-theory methods (refs. 2 to 5, for exam-
ple). The substitution of an uncambered configuration Cp, o evaluated by other
methods for the Cp o given by the present method has already been discussed,
This substitution permits an account of the contribution to Cp,, of the thick-
ness drag of other components and the skin friction drag as well. PFor configu-
rations with secondary lifting surfaces (horizontal tails and canards) another
adjustment could be made. Incremental changes to Cp, Cp, and Cp for each
angle of attack could be evaluated as the difference between linearized-theory
solutions for complete configurations and a wing-alone configuration. This
difference could then be added to the nonlinear results,

CONCLUDING REMARKS

A computational system for estimation of nonlinear aerodynamic charac-
teristics of wings at supersonic speeds has been developed and has been
implemented in a computer program entitled "Supersonic Wing Nonlinear Aerody-
namics" described more fully in the section "Computer Program." The corrected
linearized-theory method accounts for nonlinearities in the variation of basic
pressure loadings with local surface slopes, predicts the degree of attainment
of theoretical leading-edge thrust forces, and provides an estimate of detached
leading~edge vortex loadings that result when the theoretical thrust forces are
not fully realized.

Comparisons of estimates given by the present method with experimental
results show significant improvements in detailed wing pressure distributions
over those given by linearized theory, particularly for large angles of attack
and for regions of the wing where the flow is highly three-dimensional. The
new method also provides generally improved predictions of the wing overall
force and moment coefficients. Of particular importance are the more accurate
prediction of pitching moment and the more realistic estimate of the variation
of drag with camber surface severity as dictated by the design 1lift coefficient.
This latter capability should prove useful in the conduct of design studies
aimed at aerodynamic performance optimization. The new method should also pro-
vide more realistic trade-off information for selection of wing planform geom-
etry and airfoil section parameters.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

August 22, 1980
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Figure 3,- Comparison of predicted and measured pressure distributions
for uncambered delta wing of aspect ratio 2.
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disturbance formulations.
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Figure 8.- Comparison of predicted and measured forces and moments for
70° swept leading-edge arrow wing with various degrees of twist and
camber. M_ = 2.05.
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and camber. M_ = 2.6,
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@) Experiment, ref. 20
Linearized theory

————— No thrust

Full thrust

Present method

—_— No thrust
.04 Attainable thrust
@
0 10 —

C

m
CN
CA

(a) M_=1.,3,
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Figure 16.- Comparison of predicted and measured forces and moments
for aspect-ratio-2 delta wing with rounded leading edge.
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(b) M_ = 1.53.
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Figure 16.- Continued.
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Linearized theory
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Figure 16.- Concluded.
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Figure 17.- Comparison of predicted and measured forces and moments for twisted
and cambered wing of arbitrary planform.
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O Experiment, ref.21

Linearized theory
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Figure 17.- Concluded.
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O Experiment, ref. 23
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Figure 18.- Comparison of predicted and measured forces and moments for
supersonic cruise configuration of high aerodynamic efficiency.
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O Experiment, extrapolation
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Figure 19.- Estimation of effect of design lift coefficient on performance of
a supersonic cruise configuration of high aerodynamic efficiency.
M = 2'7.
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