566 research outputs found
A Copine family member, Cpne8, is a candidate quantitative trait gene for prion disease incubation time in mouse
Prion disease incubation time in mice is determined by many factors including genetic background. The prion gene itself plays a major role in incubation time; however, other genes are also known to be important. Whilst quantitative trait loci (QTL) studies have identified multiple loci across the genome, these regions are often large, and with the exception of Hectd2 on Mmu19, no quantitative trait genes or nucleotides for prion disease incubation time have been demonstrated. In this study, we use the Northport heterogeneous stock of mice to reduce the size of a previously identified QTL on Mmu15 from approximately 25 to 1.2 cM. We further characterised the genes in this region and identify Cpne8, a member of the copine family, as the most promising candidate gene. We also show that Cpne8 mRNA is upregulated at the terminal stage of disease, supporting a role in prion disease. Applying these techniques to other loci will facilitate the identification of key pathways in prion disease pathogenesis
Structure-Function Analysis of Human TYW2 Enzyme Required for the Biosynthesis of a Highly Modified Wybutosine (yW) Base in Phenylalanine-tRNA
Posttranscriptional modifications are critical for structure and function of tRNAs. Wybutosine (yW) and its derivatives are hyper-modified guanosines found at the position 37 of eukaryotic and archaeal tRNAPhe. TYW2 is an enzyme that catalyzes α-amino-α-carboxypropyl transfer activity at the third step of yW biogenesis. Using complementation of a ΔTYW2 strain, we demonstrate here that human TYW2 (hTYW2) is active in yeast and can synthesize the yW of yeast tRNAPhe. Structure-guided analysis identified several conserved residues in hTYW2 that interact with S-adenosyl-methionine (AdoMet), and mutation studies revealed that K225 and E265 are critical residues for the enzymatic activity. We previously reported that the human TYW2 is overexpressed in breast cancer. However, no difference in the tRNAPhe modification status was observed in either normal mouse tissue or a mouse tumor model that overexpresses Tyw2, indicating that hTYW2 may have a role in tumorigenesis unrelated to yW biogenesis
Role of Carbonic Anhydrase IV in the Bicarbonate-Mediated Activation of Murine and Human Sperm
HCO3− is the signal for early activation of sperm motility. In vivo, this occurs when sperm come into contact with the HCO3− containing fluids in the reproductive tract. The activated motility enables sperm to travel the long distance to the ovum. In spermatozoa HCO3− stimulates the atypical sperm adenylyl cyclase (sAC) to promote the cAMP-mediated pathway that increases flagellar beat frequency. Stimulation of sAC may occur when HCO3− enters spermatozoa either directly by anion transport or indirectly via diffusion of CO2 with subsequent hydration by intracellular carbonic anhydrase (CA). We here show that murine sperm possess extracellular CA IV that is transferred to the sperm surface as the sperm pass through the epididymis. Comparison of CA IV expression by qRT PCR analysis confirms that the transfer takes place in the corpus epididymidis. We demonstrate murine and human sperm respond to CO2 with an increase in beat frequency, an effect that can be inhibited by ethoxyzolamide. Comparing CA activity in sperm from wild-type and CA IV−/− mice we found a 32.13% reduction in total CA activity in the latter. The CA IV−/− sperm also have a reduced response to CO2. While the beat frequency of wild-type sperm increases from 2.86±0.12 Hz to 6.87±0.34 Hz after CO2 application, beat frequency of CA IV−/− sperm only increases from 3.06±0.20 Hz to 5.29±0.47 Hz. We show, for the first time, a physiological role of CA IV that supplies sperm with HCO3−, which is necessary for stimulation of sAC and hence early activation of spermatozoa
Extreme genetic fragility of the HIV-1 capsid
Genetic robustness, or fragility, is defined as the ability, or lack thereof, of a biological entity to maintain function in the face of mutations. Viruses that replicate via RNA intermediates exhibit high mutation rates, and robustness should be particularly advantageous to them. The capsid (CA) domain of the HIV-1 Gag protein is under strong pressure to conserve functional roles in viral assembly, maturation, uncoating, and nuclear import. However, CA is also under strong immunological pressure to diversify. Therefore, it would be particularly advantageous for CA to evolve genetic robustness. To measure the genetic robustness of HIV-1 CA, we generated a library of single amino acid substitution mutants, encompassing almost half the residues in CA. Strikingly, we found HIV-1 CA to be the most genetically fragile protein that has been analyzed using such an approach, with 70% of mutations yielding replication-defective viruses. Although CA participates in several steps in HIV-1 replication, analysis of conditionally (temperature sensitive) and constitutively non-viable mutants revealed that the biological basis for its genetic fragility was primarily the need to coordinate the accurate and efficient assembly of mature virions. All mutations that exist in naturally occurring HIV-1 subtype B populations at a frequency >3%, and were also present in the mutant library, had fitness levels that were >40% of WT. However, a substantial fraction of mutations with high fitness did not occur in natural populations, suggesting another form of selection pressure limiting variation in vivo. Additionally, known protective CTL epitopes occurred preferentially in domains of the HIV-1 CA that were even more genetically fragile than HIV-1 CA as a whole. The extreme genetic fragility of HIV-1 CA may be one reason why cell-mediated immune responses to Gag correlate with better prognosis in HIV-1 infection, and suggests that CA is a good target for therapy and vaccination strategies
Glutamine synthetase gene expression during the regeneration of the annelid Enchytraeus japonensis
Enchytraeus japonensis is a highly regenerative oligochaete annelid that can regenerate a complete individual from a small body fragment in 4–5 days. In our previous study, we performed complementary deoxyribonucleic acid subtraction cloning to isolate genes that are upregulated during E. japonensis regeneration and identified glutamine synthetase (gs) as one of the most abundantly expressed genes during this process. In the present study, we show that the full-length sequence of E. japonensis glutamine synthetase (EjGS), which is the first reported annelid glutamine synthetase, is highly similar to other known class II glutamine synthetases. EjGS shows a 61–71% overall amino acid sequence identity with its counterparts in various other animal species, including Drosophila and mouse. We performed detailed expression analysis by in situ hybridization and reveal that strong gs expression occurs in the blastemal regions of regenerating E. japonensis soon after amputation. gs expression was detectable at the cell layer covering the wound and was found to persist in the epidermal cells during the formation and elongation of the blastema. Furthermore, in the elongated blastema, gs expression was detectable also in the presumptive regions of the brain, ventral nerve cord, and stomodeum. In the fully formed intact head, gs expression was also evident in the prostomium, brain, the anterior end of the ventral nerve cord, the epithelium of buccal and pharyngeal cavities, the pharyngeal pad, and in the esophageal appendages. In intact E. japonensis tails, gs expression was found in the growth zone in actively growing worms but not in full-grown individuals. In the nonblastemal regions of regenerating fragments and in intact worms, gs expression was also detected in the nephridia, chloragocytes, gut epithelium, epidermis, spermatids, and oocytes. These results suggest that EjGS may play roles in regeneration, nerve function, cell proliferation, nitrogenous waste excretion, macromolecule synthesis, and gametogenesis
Lessons from Peer Support Among Individuals with Mental Health Difficulties: A Review of the Literature
We conducted a comprehensive narrative review and used a systematic search strategy to identify studies related to peer support among adults with mental health difficulties. The purposes of this review were to describe the principles, effects and benefits of peer support documented in the published literature, to discuss challenging aspects of peer support and to investigate lessons from peer support. Fifty-one studies, including 8 review articles and 19 qualitative studies, met the inclusion criteria for this review. Most of the challenges for peer support were related to “role” and “relationship” issues; that is, how peer support providers relate to people who receive peer support and how peer support providers are treated in the system. The knowledge gained from peer support relationships, such as mutual responsibility and interdependence, might be a clue toward redefining the helper-helper relationship as well as the concepts of help and support
Geckos decouple fore- and hind limb kinematics in response to changes in incline
This work is supported by an NSF grant (NSF IOS-1147043) to TE
Cognitive health among older adults in the United States and in England
<p>Abstract</p> <p>Background</p> <p>Cognitive function is a key determinant of independence and quality of life among older adults. Compared to adults in England, US adults have a greater prevalence of cardiovascular risk factors and disease that may lead to poorer cognitive function. We compared cognitive performance of older adults in the US and England, and sought to identify sociodemographic and medical factors associated with differences in cognitive function between the two countries.</p> <p>Methods</p> <p>Data were from the 2002 waves of the US Health and Retirement Study (HRS) (n = 8,299) and the English Longitudinal Study of Ageing (ELSA) (n = 5,276), nationally representative population-based studies designed to facilitate direct comparisons of health, wealth, and well-being. There were differences in the administration of the HRS and ELSA surveys, including use of both telephone and in-person administration of the HRS compared to only in-person administration of the ELSA, and a significantly higher response rate for the HRS (87% for the HRS vs. 67% for the ELSA). In each country, we assessed cognitive performance in non-hispanic whites aged 65 and over using the same tests of memory and orientation (0 to 24 point scale).</p> <p>Results</p> <p>US adults scored significantly better than English adults on the 24-point cognitive scale (unadjusted mean: 12.8 vs. 11.4, P < .001; age- and sex-adjusted: 13.2 vs. 11.7, P < .001). The US cognitive advantage was apparent even though US adults had a significantly higher prevalence of cardiovascular risk factors and disease. In a series of OLS regression analyses that controlled for a range of sociodemographic and medical factors, higher levels of education and wealth, and lower levels of depressive symptoms, accounted for some of the US cognitive advantage. US adults were also more likely to be taking medications for hypertension, and hypertension treatment was associated with significantly better cognitive function in the US, but not in England (P = .014 for treatment × country interaction).</p> <p>Conclusion</p> <p>Despite methodological differences in the administration of the surveys in the two countries, US adults aged ≥ 65 appeared to be cognitively healthier than English adults, even though they had a higher burden of cardiovascular risk factors and disease. Given the growing number of older adults worldwide, future cross-national studies aimed at identifying the medical and social factors that might prevent or delay cognitive decline in older adults would make important and valuable contributions to public health.</p
GWAS for discovery and replication of genetic loci associated with sudden cardiac arrest in patients with coronary artery disease
<p>Abstract</p> <p>Background</p> <p>Epidemiologic evidence suggests a heritable component to risk for sudden cardiac arrest independent of risk for myocardial infarction. Recent candidate gene association studies for community sudden cardiac arrests have focused on a limited number of biological pathways and yielded conflicting results. We sought to identify novel gene associations for sudden cardiac arrest in patients with coronary artery disease by performing a genome-wide association study.</p> <p>Methods</p> <p>Tagging SNPs (n = 338,328) spanning the genome were typed in a case-control study comparing 89 patients with coronary artery disease and sudden cardiac arrest due to ventricular tachycardia or ventricular fibrillation to 520 healthy controls.</p> <p>Results</p> <p>Fourteen SNPs including 7 SNPs among 7 genes (ACYP2, AP1G2, ESR1, DGES2, GRIA1, KCTD1, ZNF385B) were associated with sudden cardiac arrest (all p < 1.30 × 10<sup>-7</sup>), following Bonferroni correction and adjustment for population substructure, age, and sex; genetic variation in ESR1 (p = 2.62 × 10<sup>-8</sup>; Odds Ratio [OR] = 1.43, 95% confidence interval [CI]:1.277, 1.596) has previously been established as a risk factor for cardiovascular disease. In tandem, the role of 9 genes for monogenic long QT syndrome (LQT1-9) was assessed, yielding evidence of association with CACNA1C (LQT8; p = 3.09 × 10<sup>-4</sup>; OR = 1.18, 95% CI:1.079, 1.290). We also assessed 4 recently published gene associations for sudden cardiac arrest, validating NOS1AP (p = 4.50 × 10<sup>-2</sup>, OR = 1.15, 95% CI:1.003, 1.326), CSMD2 (p = 6.6 × 10<sup>-3</sup>, OR = 2.27, 95% CI:1.681, 2.859), and AGTR1 (p = 3.00 × 10<sup>-3</sup>, OR = 1.13, 95% CI:1.042, 1.215).</p> <p>Conclusion</p> <p>We demonstrate 11 gene associations for sudden cardiac arrest due to ventricular tachycardia/ventricular fibrillation in patients with coronary artery disease. Validation studies in independent cohorts and functional studies are required to confirm these associations.</p
- …