1,571 research outputs found

    Nucleon-Nucleon Scattering in a Three Dimensional Approach

    Get PDF
    The nucleon-nucleon (NN) t-matrix is calculated directly as function of two vector momenta for different realistic NN potentials. To facilitate this a formalism is developed for solving the two-nucleon Lippmann-Schwinger equation in momentum space without employing a partial wave decomposition. The total spin is treated in a helicity representation. Two different realistic NN interactions, one defined in momentum space and one in coordinate space, are presented in a form suited for this formulation. The angular and momentum dependence of the full amplitude is studied and displayed. A partial wave decomposition of the full amplitude it carried out to compare the presented results with the well known phase shifts provided by those interactions.Comment: 26 pages plus 10 jpg figure

    Triton calculations with π\pi and ρ\rho exchange three-nucleon forces

    Full text link
    The Faddeev equations are solved in momentum space for the trinucleon bound state with the new Tucson-Melbourne π\pi and ρ\rho exchange three-nucleon potentials. The three-nucleon potentials are combined with a variety of realistic two-nucleon potentials. The dependence of the triton binding energy on the πNN\pi NN cut-off parameter in the three-nucleon potentials is studied and found to be reduced compared to the case with pure π\pi exchange. The ρ\rho exchange parts of the three-nucleon potential yield an overall repulsive effect. When the recommended parameters are employed, the calculated triton binding energy turns out to be very close to its experimental value. Expectation values of various components of the three-nucleon potential are given to illustrate their significance for binding.Comment: 17 pages Revtex 3.0, 4 figures. Accepted for publication in Phys. Rev.

    High Fidelity Tape Transfer Printing Based On Chemically Induced Adhesive Strength Modulation

    Get PDF
    Transfer printing, a two-step process (i.e. picking up and printing) for heterogeneous integration, has been widely exploited for the fabrication of functional electronics system. To ensure a reliable process, strong adhesion for picking up and weak or no adhesion for printing are required. However, it is challenging to meet the requirements of switchable stamp adhesion. Here we introduce a simple, high fidelity process, namely tape transfer printing(TTP), enabled by chemically induced dramatic modulation in tape adhesive strength. We describe the working mechanism of the adhesion modulation that governs this process and demonstrate the method by high fidelity tape transfer printing several types of materials and devices, including Si pellets arrays, photodetector arrays, and electromyography (EMG) sensors, from their preparation substrates to various alien substrates. High fidelity tape transfer printing of components onto curvilinear surfaces is also illustrated

    Four-Body Bound State Calculations in Three-Dimensional Approach

    Get PDF
    The four-body bound state with two-body interactions is formulated in Three-Dimensional approach, a recently developed momentum space representation which greatly simplifies the numerical calculations of few-body systems without performing the partial wave decomposition. The obtained three-dimensional Faddeev-Yakubovsky integral equations are solved with two-body potentials. Results for four-body binding energies are in good agreement with achievements of the other methods.Comment: 29 pages, 2 eps figures, 8 tables, REVTeX

    Triton photodisintegration in three-dimensional approach

    Full text link
    Two- and three- particles photodisintegration of the triton is investigated in a three-dimensional (3D) Faddeev approach. For this purpose the Jacobi momentum vectors for three particles system and spin-isospin quantum numbers of the individual nucleons are considered. Based on this picture the three-nucleon Faddeev integral equations with the two-nucleon interaction are formulated without employing the partial wave decomposition. The single nucleon current as well as π−\pi- and ρ−\rho- like exchange currents are used in an appropriate form to be employed in 3D approach. The exchange currents are derived from AV18 NN force. The two-body t-matrix, Deuteron and Triton wave functions are calculated in the 3D approach by using AV18 potential. Benchmarks are presented to compare the total cross section for the two- and three- particles photodisintegration in the range of EÎł<30MeVE_{\gamma}<30 MeV. The 3D Faddeev approach shows promising results

    Association of Fidaxomicin with C. difficile spores: Effects of Persistence on Subsequent Spore Recovery, Outgrowth and Toxin Production.

    Get PDF
    Background: We have previously shown that fidaxomicin instillation prevents spore recovery in an in-vitro gut model, whereas vancomycin does not. The reasons for this are unclear. Here, we have investigated persistence of fidaxomicin and vancomycin on C. difficile spores, and examined post-antibiotic exposure spore recovery, outgrowth and toxin production. Methods: Prevalent UK C. difficile ribotypes (n=10) were incubated with 200mg/L fidaxomicin, vancomycin or a non-antimicrobial containing control for 1 h in faecal filtrate or Phosphate Buffered Saline. Spores were washed three times with faecal filtrate or phosphate buffered saline, and residual spore-associated antimicrobial activity was determined by bioassay. For three ribotypes (027, 078, 015), antimicrobial-exposed, faecal filtrate-washed spores and controls were inoculated into broth. Viable vegetative and spore counts were enumerated on CCEYL agar. Percentage phase bright spores, phase dark spores and vegetative cells were enumerated by phase contrast microscopy at 0, 3, 6, 24 and 48 h post-inoculation. Toxin levels (24 and 48h) were determined by cell cytotoxicity assay. Results: Fidaxomicin, but not vancomycin persisted on spores of all ribotypes following washing in saline (mean=10.1mg/L; range= 4.0-14mg/L) and faecal filtrate (mean =17.4mg/L; 8.4-22.1mg/L). Outgrowth and proliferation rates of vancomycin-exposed spores were similar to controls, whereas fidaxomicin-exposed spores showed no vegetative cell growth after 24 and 48 h. At 48h, toxin levels averaged 3.7 and 3.3 relative units (RU) in control and vancomycin-exposed samples, respectively, but were undetectable in fidaxomicin-exposed samples. Conclusion: Fidaxomicin persists on C. difficile spores, whereas vancomycin does not. This persistence prevents subsequent growth and toxin production in vitro. This may have implications on spore viability, thereby impacting CDI recurrence and transmission rates

    Determination of the Fermion Pair Size in a Resonantly Interacting Superfluid

    Full text link
    Fermionic superfluidity requires the formation of pairs. The actual size of these fermion pairs varies by orders of magnitude from the femtometer scale in neutron stars and nuclei to the micrometer range in conventional superconductors. Many properties of the superfluid depend on the pair size relative to the interparticle spacing. This is expressed in BCS-BEC crossover theories, describing the crossover from a Bardeen-Cooper-Schrieffer (BCS) type superfluid of loosely bound and large Cooper pairs to Bose-Einstein condensation (BEC) of tightly bound molecules. Such a crossover superfluid has been realized in ultracold atomic gases where high temperature superfluidity has been observed. The microscopic properties of the fermion pairs can be probed with radio-frequency (rf) spectroscopy. Previous work was difficult to interpret due to strong and not well understood final state interactions. Here we realize a new superfluid spin mixture where such interactions have negligible influence and present fermion-pair dissociation spectra that reveal the underlying pairing correlations. This allows us to determine the spectroscopic pair size in the resonantly interacting gas to be 2.6(2)/kF (kF is the Fermi wave number). The pairs are therefore smaller than the interparticle spacing and the smallest pairs observed in fermionic superfluids. This finding highlights the importance of small fermion pairs for superfluidity at high critical temperatures. We have also identified transitions from fermion pairs into bound molecular states and into many-body bound states in the case of strong final state interactions.Comment: 8 pages, 7 figures; Figures updated; New Figures added; Updated discussion of fit function

    Polar phonons in some compressively stressed epitaxial and polycrystalline SrTiO3 thin films

    Full text link
    Several SrTiO3 (STO) thin films without electrodes processed by pulsed laser deposition, of thicknesses down to 40 nm, were studied using infrared transmission and reflection spectroscopy. The complex dielectric responses of polar phonon modes, particularly ferroelectric soft mode, in the films were determined quantitatively. The compressed epitaxial STO films on (100) La0.18Sr0.82Al0.59-Ta0.41O3 substrates (strain 0.9%) show strongly stiffened phonon responses, whereas the soft mode in polycrystalline film on (0001) sapphire substrate shows a strong broadening due to grain boundaries and/or other inhomogeneities and defects. The stiffened soft mode is responsible for a much lower static permittivity in the plane of the compressed film than in the bulk samples.Comment: 11 page

    Pair Phase Fluctuations and the Pseudogap

    Full text link
    The single-particle density of states and the tunneling conductance are studied for a two-dimensional BCS-like Hamiltonian with a d_{x^2-y^2}-gap and phase fluctuations. The latter are treated by a classical Monte Carlo simulation of an XY model. Comparison of our results with recent scanning tunneling spectra of Bi-based high-T_c cuprates supports the idea that the pseudogap behavior observed in these experiments can be understood as arising from phase fluctuations of a d_{x^2-y^2} pairing gap whose amplitude forms on an energy scale set by T_c^{MF} well above the actual superconducting transition.Comment: 5 pages, 6 eps-figure

    Virtual photon structure functions and positivity constraints

    Full text link
    We study the three positivity constraints among the eight virtual photon structure functions, derived from the Cauchy-Schwarz inequality and which are hence model-independent. The photon structure functions obtained from the simple parton model show quite different behaviors in a massive quark or a massless quark case, but they satisfy, in both cases, the three positivity constraints. We then discuss an inequality which holds among the unpolarized and polarized photon structure functions F1ÎłF_1^\gamma, g1Îłg_1^\gamma and WTTτW_{TT}^\tau, in the kinematic region Λ2â‰ȘP2â‰ȘQ2\Lambda^2\ll P^2 \ll Q^2, where −Q2(−P2)-Q^2 (-P^2) is the mass squared of the probe (target) photon, and we examine whether this inequality is satisfied by the perturbative QCD results.Comment: 24 pages, 13 eps figure
    • 

    corecore