4,211 research outputs found

    Varying the Abundance of O Antigen in \u3cem\u3eRhizobium etli\u3c/em\u3e and Its Effect on Symbiosis with \u3cem\u3ePhaseolus vulgaris\u3c/em\u3e

    Get PDF
    Judged by migration of its lipopolysaccharide (LPS) in gel electrophoresis, the O antigen of Rhizobium etli mutant strain CE166 was apparently of normal size. However, its LPS sugar composition and staining of the LPS bands after electrophoresis indicated that the proportion of its LPS molecules that possessed O antigen was only 40% of the wild-type value. Its LPS also differed from the wild type by lacking quinovosamine (2-amino-2,6-dideoxyglucose). Both of these defects were due to a single genetic locus carrying a Tn5 insertion. The deficiency in O-antigen amount, but not the absence of quinovosamine, was suppressed by transferring into this strain recombinant plasmids that shared a 7.8-kb stretch of the R. etli CE3 lps genetic region α, even though this suppressing DNA did not carry the genetic region mutated in strain CE166. Strain CE166 gave rise to pseudonodules on legume host Phaseolus vulgaris, whereas the mutant suppressed by DNA from lps region α elicited nitrogen-fixing nodules. However, the nodules in the latter case developed slowly and were widely dispersed. Two other R. etli mutants that had one-half or less of the normal amount of O antigen also gave rise to pseudonodules on P. vulgaris. The latter strains were mutated in lps region α and could be restored to normal LPS content and normal symbiosis by complementation with wild-type DNA from this region. Hence, the symbiotic role of LPS requires near-normal abundance of O antigen and may require a structural feature conferred by quinovosamin

    Expression of \u3cem\u3eRhizobium leguminosarum\u3c/em\u3e CFN42 Genes for Lipopolysaccharide in Strains Derived from Different \u3cem\u3eR. leguminosarum\u3c/em\u3e Soil Isolates

    Get PDF
    Two mutant derivatives of Rhizobium leguminosarum ANU843 defective in lipopolysaccharide (LPS) were isolated. The LPS of both mutants lacked O antigen and some sugar residues of the LPS core oligosaccharides. Genetic regions previously cloned from another Rhizobium leguminosarum wild-type isolate, strain CFN42, were used to complement these mutants. One mutant was complemented to give LPS that was apparently identical to the LPS of strain ANU843 in antigenicity, electrophoretic mobility, and sugar composition. The other mutant was complemented by a second CFN42 lps genetic region. In this case the resulting LPS contained O-antigen sugars characteristic of donor strain CFN42 and reacted weakly with antiserum against CFN42 cells, but did not react detectably with antiserum against ANU843 cells. Therefore, one of the CFN42 lps genetic regions specifies a function that is conserved between the two R. leguminosarum wild-type isolates, whereas the other region, at least in part, specifies a strain-specific LPS structure. Transfer of these two genetic regions into wild-type strains derived from R. leguminosarum ANU843 and 128C53 gave results consistent with this conclusion. The mutants derived from strain ANU843 elicited incompletely developed clover nodules that exhibited low bacterial populations and very low nitrogenase activity. Both mutants elicited normally developed, nitrogen-fixing clover nodules when they carried CFN42 lps DNA that permitted synthesis of O-antigen-containing LPS, regardless of whether the O antigen was the one originally made by strain ANU843

    Genetic Locus and Structural Characterization of the Biochemical Defect in the O-Antigenic Polysaccharide of the Symbiotically Deficient \u3cem\u3eRhizobium etli\u3c/em\u3e Mutant, CE166

    Get PDF
    The O-antigen polysaccharide (OPS) of Rhizobium etli CE3 lipopolysaccharide (LPS) is linked to the core oligosaccharide via an N-acetylquinovosaminosyl (QuiNAc) residue. A mutant of CE3, CE166, produces LPS with reduced amounts of OPS, and a suppressed mutant, CE166α, produces LPS with nearly normal OPS levels. Both mutants are deficient in QuiNAc production. Characterization of OPS from CE166 and CE166α showed that QuiNAc was replaced by its 4-keto derivative, 2-acetamido-2,6-dideoxyhexosyl-4-ulose. The identity of this residue was determined by NMR and mass spectrometry, and by gas chromatography-mass spectrometry analysis of its 2-acetamido-4-deutero-2,6-dideoxyhexosyl derivatives produced by reduction of the 4-keto group using borodeuteride. Mass spectrometric and methylation analyses showed that the 2-acetamido-2,6-dideoxyhexosyl-4-ulosyl residue was 3-linked and attached to the core-region external Kdo III residue of the LPS, the same position as that of QuiNAc in the CE3 LPS. DNA sequencing revealed that the transposon insertion in strain CE166 was located in an open reading frame whose predicted translation product, LpsQ, falls within a large family of predicted open reading frames, which includes biochemically characterized members that are sugar epimerases and/or reductases. A hypothesis to be tested in future work is that lpsQ encodes UDP-2-acetamido-2,6-dideoxyhexosyl-4-ulose reductase, the second step in the synthesis of UDP-QuiNAc from UDP-GlcNAc

    \u3cem\u3eRhizobium etli\u3c/em\u3e CE3 Bacteroid Lipopolysaccharides Are Structurally Similar but Not Identical to Those Produced by Cultured CE3 Bacteria

    Get PDF
    Rhizobium etli CE3 bacteroids were isolated from Phaseolus vulgaris root nodules. The lipopolysaccharide (LPS) from the bacteroids was purified and compared with the LPS from laboratory-cultured R. etli CE3and from cultures grown in the presence of anthocyanin. Comparisons were made of the O-chain polysaccharide, the core oligosaccharide, and the lipid A. Although LPS from CE3 bacteria and bacteroids are structurally similar, it was found that bacteroid LPS had specific modifications to both the O-chain polysaccharide and lipid A portions of their LPS. Cultures grown with anthocyanin contained modifications only to the O-chain polysaccharide. The changes to the O-chain polysaccharide consisted of the addition of a single methyl group to the 2-position of a fucosyl residue in one of the five O-chain trisaccharide repeat units.This same change occurred for bacteria grown in the presence of anthocyanin. This methylation change correlated with the inability of bacteroid LPS and LPS from anthocyanin-containing cultures to bind the monoclonal antibody JIM28. The coreoligosaccharide region of bacteroid LPS and from anthocyanin grown cultures was identical to that of LPS from normal laboratory-cultured CE3. The lipid A from bacteroids consisted exclusively of a tetraacylated species compared with the presence of both tetra-and pentaacylated lipid A from laboratory cultures. Growth in the presence of anthocyanin did not affect the lipid A structure. Purified bacteroids that could resume growth were also found to be more sensitive to the cationic peptides, poly-L-lysine, polymyxin-B, and melittin

    Characterization of the Lipopolysaccharide from a \u3cem\u3eRhizobium phaseoli\u3c/em\u3e Mutant that is Defective in Infection Thread Development

    Get PDF
    The lipopolysaccharide (LPS) from a Rhizobium phaseoli mutant, CE109, was isolated and compared with that of its wild-type parent, CE3. A previous report has shown that the mutant is defective in infection thread development, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows that it has an altered LPS (K. D. Noel, K. A. VandenBosch, and B. Kulpaca, J. Bacteriol. 168:1392-1462, 1986). Mild acid hydrolysis of the CE3 LPS released a polysaccharide and an oligosaccharide, PS1 and PS2, respectively. Mild acid hydrolysis of CE109 LPS released only an oligosaccharide. Chemical and immunochemical analyses showed that CE3-PS1 is the antigenic O chain of this strain and that CE109 LPS does not contain any of the major sugar components of CE3-PS1. CE109 oligosaccharide was identical in composition to CE3-PS2. The lipid A\u27s from both strains were very similar in composition, with only minor quantitative variations. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of CE3 and CE109 LPSs showed that CE3 LPS separated into two bands, LPS I and LPS II, while CE109 had two bands which migrated to positions similar to that of LPS II. Immunoblotting with anti-CE3 antiserum showed that LPS I contains the antigenic O chain of CE3, PS1. Anti-CE109 antiserum interacted strongly with both CE109 LPS bands and CE3 LPS II and interacted weakly with CE3 LPS I. Mild-acid hydrolysis of CE3 LPS I, extracted from the polyacrylamide gel, showed that it contained both PS1 and PS2. The results in this report showed that CE109 LPS consists of only the lipid A core and is missing the antigenic O chain

    Edible-Oil Pollution on Fanning Island

    Get PDF
    In August 1975 the M.V. Lindenbank went aground on Fanning Atoll and dumped 17,797 metric tons of cargo onto a pristine coral reef. Nearly 10,000 tons of the cargo were vegetable oils and edible-oil raw materials such as copra. Although no toxic substances were dumped into the water, the effects of these oily substances were similar to those occurring after a petroleum oil spill. Fishes, crustaceans, and mollusks were killed and an excessive growth of Enteromorpha and Viva occurred. The animal kill was most likely attributable to asphyxiation and clogging of the digestive tract, while the algal growth was most likely attributable to the elimination of algal competitors, increased fertilization from the pollution and ship, and reduced grazing pressure. Oil may have suppressed certain algal species while stimulating others. Complete recovery of the original coralline algal community proceeded in sequence from Enteromorpha to Viva to Cladophora-Lyngbya to Hypnea-Caulerpa to Jania-Gelidium. The climax community became evident II months after the original spill

    Junior Recital: Andrew Carlson, Tuba; Cindy Russell, Piano; May 3, 1977

    Get PDF
    Hayden AuditoriumTuesday EveningMay 3, 19778:30 p.m

    Senior Recital: Kevin Carlson, Guitar; Simi Russell, Piano; April 1, 2010

    Get PDF
    Kemp Recital Hall April 1, 2010 Thursday Evening 6:30 p.m

    Cortisol levels are positively associated with pup-feeding rates in male meerkats

    Get PDF
    In societies of cooperative vertebrates, individual differences in contributions to offspring care are commonly substantial. Recent attempts to explain the causes of this variation have focused on correlations between contributions to care and the protein hormone prolactin, or the steroid hormone testosterone. However, such studies have seldom considered the importance of other hormones or controlled for non-hormonal factors that are correlative with both individual hormone levels and contributions to care. Using multivariate statistics, we show that hormone levels explain significant variation in contributions to pup-feeding by male meerkats, even after controlling for non-hormonal effects. However, long-term contributions to pup provisioning were significantly and positively correlated with plasma levels of cortisol rather than prolactin, while plasma levels of testosterone were not related to individual patterns of pup-feeding. Furthermore, a playback experiment that used pup begging calls to increase the feeding rates of male helpers gave rise to parallel increases in plasma cortisol levels, whilst prolactin and testosterone levels remained unchanged. Our findings confirm that hormones can explain significant amounts of variation in contributions to offspring feeding, and that cortisol, not prolactin, is the hormone most strongly associated with pup-feeding in cooperative male meerkats
    corecore