298 research outputs found

    Predictors of Ventricular Fibrillation at Reperfusion in Patients With Acute ST-Elevation Myocardial Infarction Treated by Primary Percutaneous Coronary Intervention.

    Get PDF
    Ventricular fibrillation (VF) during reperfusion (rVF) in ST-segment elevation myocardial infarction (STEMI) is an infrequent but serious event that complicates coronary interventions. The aim of this study was to analyze clinical predictors of rVF in an unselected population of patients with STEMI treated with percutaneous coronary intervention (PCI). Consecutive patients with STEMI admitted to a tertiary care hospital for primary PCI from 2007 to 2012 were retrospectively assessed for the presence of rVF. Admission electrocardiograms, stored in a digital format, were analyzed for a maximal ST-segment elevation in a single lead and the sum of ST-segment deviations in all leads. Clinical, electrocardiographic, and angiographic characteristics were tested for associations with rVF using logistic regression analysis. Among 3,724 patients with STEMI admitted from 2007 to 2012, 71 (1.9%) had rVF. In univariate analysis, history of myocardial infarction, aspirin and β-blocker use, VF before PCI, left main coronary artery disease, inferior myocardial infarction localization, symptom-to-balloon time 300 μV, and sum of ST-segment deviations in all leads >1,500 μV were associated with increased risk for rVF. In a multivariate analysis, sum of ST-segment deviations in all leads >1500 μV (odds ratio 3.7, 95% confidence interval 1.45 to 9.41, p = 0.006) before PCI remained an independent predictor of rVF. In-hospital mortality was 18.3% in the rVF group and 3.3% in the group without VF (p <0.001), but rVF was not an independent predictor of in-hospital death. In conclusion, the magnitude of ST-segment elevation before PCI for STEMI independently predicts rVF and should be considered in periprocedural arrhythmic risk assessment. Despite higher in-hospital mortality in patients with rVF, rVF itself has no independent prognostic value for prognosis

    The Comparative Effectiveness of a Model of Job Development versus Treatment as Usual

    Get PDF
    Job development is critical to assisting people with serious disabilities to obtain jobs, but little is known about the actual methods that make job development effective. Using a post-only quasi-experimental design, this study examined the effects of the Conceptual Selling® method on the number of job development contacts and number of job placements. By controlling for employment specialists' characteristics (age, length of time in current position, years of human service experience, and years of business experience), the authors determined that the employment specialists trained in the Conceptual Selling® method had more job development contacts per employer, leading to more effective job placements for employers contacted, than the control group

    Maladaptive and adaptive emotion regulation through music : a behavioral and neuroimaging study of males and females

    Get PDF
    Music therapists use guided affect regulation in the treatment of mood disorders. However, self-directed uses of music in affect regulation are not fully understood. Some uses of music may have negative effects on mental health, as can non music regulation strategies, such as rumination. Psychological testing and functional magnetic resonance imaging (fMRI) were used explore music listening strategies in relation to mental health. Participants (n = 123) were assessed for depression, anxiety and Neuroticism, and uses of Music in Mood Regulation (MMR). Neural responses to music were measured in the medial prefrontal cortex (mPFC) in a subset of participants (n = 56). Discharge, using music to express negative emotions, related to increased anxiety and Neuroticism in all participants and particularly in males. Males high in Discharge showed decreased activity of mPFC during music listening compared with those using less Discharge. Females high in Diversion, using music to distract from negative emotions, showed more mPFC activity than females using less Diversion. These results suggest that the use of Discharge strategy can be associated with maladaptive patterns of emotional regulation, and may even have long-term negative effects on mental health. This finding has real-world applications in psychotherapy and particularly in clinical music therapy.Peer reviewe

    Is It Time for Synthetic Biodiversity Conservation?

    Get PDF
    Evidence indicates that, despite some critical successes, current conservation approaches are not slowing the overall rate of biodiversity loss. The field of synthetic biology, which is capable of altering natural genomes with extremely precise editing, might offer the potential to resolve some intractable conservation problems (e.g., invasive species or pathogens). However, it is our opinion that there has been insufficient engagement by the conservation community with practitioners of synthetic biology. We contend that rapid, large-scale engagement of these two communities is urgently needed to avoid unintended and deleterious ecological consequences. To this point we describe case studies where synthetic biology is currently being applied to conservation, and we highlight the benefits to conservation biologists from engaging with this emerging technology

    Heat shock protein Grp78/BiP/HspA5 binds directly to TDP-43 and mitigates toxicity associated with disease pathology

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no cure or effective treatment in which TAR DNA Binding Protein of 43 kDa (TDP-43) abnormally accumulates into misfolded protein aggregates in affected neurons. It is widely accepted that protein misfolding and aggregation promotes proteotoxic stress. The molecular chaperones are a primary line of defense against proteotoxic stress, and there has been long-standing interest in understanding the relationship between chaperones and aggregated protein in ALS. Of particular interest are the heat shock protein of 70 kDa (Hsp70) family of chaperones. However, defining which of the 13 human Hsp70 isoforms is critical for ALS has presented many challenges. To gain insight into the specific Hsp70 that modulates TDP-43, we investigated the relationship between TDP-43 and the Hsp70s using proximity-dependent biotin identification (BioID) and discovered several Hsp70 isoforms associated with TDP-43 in the nucleus, raising the possibility of an interaction with native TDP-43. We further found that HspA5 bound specifically to the RNA-binding domain of TDP-43 using recombinantly expressed proteins. Moreover, in a Drosophila strain that mimics ALS upon TDP-43 expression, the mRNA levels of the HspA5 homologue (Hsc70.3) were significantly increased. Similarly we observed upregulation of HspA5 in prefrontal cortex neurons from human ALS patients. Finally, overexpression of HspA5 in Drosophila rescued TDP-43-induced toxicity, suggesting that upregulation of HspA5 may have a compensatory role in ALS pathobiology

    Peripheral nerve induces macrophage neurotrophic activities: regulation of neuronal process outgrowth, intracellular signaling and synaptic function.

    Get PDF
    Abstract Rat cortical neurons cultured in conditioned media from human monocyte-derived macrophages (MDM) show increased neuronal protein synthesis, neurite outgrowth, mitogen-activating protein kinase activity, and synaptic function. Neurotrophic properties of human MDMconditioned media are significantly enhanced by human peripheral nerve and to a more limited extent by CD40 ligand pre-stimulation. Such positive effects of MDM secretions on neuronal function parallel the secretion of brain-derived neurotrophic factor (BDNF). MDM activation cues may serve to balance toxic activities produced during neurodegenerative diseases and thus, under certain circumstances, mitigate neuronal degeneration.

    Roles of the 15-kDa Selenoprotein (Sep15) in Redox Homeostasis and Cataract Development Revealed by the Analysis of Sep 15 Knockout Mice

    Get PDF
    The 15-kDa selenoprotein (Sep15) is a thioredoxin-like, endoplasmic reticulum-resident protein involved in the quality control of glycoprotein folding through its interaction with UDP-glucose:glycoprotein glucosyltransferase. Expression of Sep15 is regulated by dietary selenium and the unfolded protein response, but its specific function is not known. In this study, we developed and characterized Sep15 KO mice by targeted removal of exon 2 of the Sep15 gene coding for the cysteinerich UDP-glucose:glycoprotein glucosyltransferase-binding domain. These KO mice synthesized a mutant mRNA, but the shortened protein product could be detected neither in tissues nor in Sep15 KO embryonic fibroblasts. Sep15 KO mice were viable and fertile, showed normal brain morphology, and did not activate endoplasmic reticulum stress pathways. However, parameters of oxidative stress were elevated in the livers of these mice. We found that Sep15 mRNA was enriched during lens development. Further phenotypic characterization of Sep15KO mice revealed a prominent nuclear cataract that developed at an early age. These cataracts did not appear to be associated with severe oxidative stress or glucose dysregulation.Wesuggest that the cataracts resulted from an improper folding status of lens proteins caused by Sep15 deficiency

    Roles of the 15-kDa Selenoprotein (Sep15) in Redox Homeostasis and Cataract Development Revealed by the Analysis of Sep 15 Knockout Mice

    Get PDF
    The 15-kDa selenoprotein (Sep15) is a thioredoxin-like, endoplasmic reticulum-resident protein involved in the quality control of glycoprotein folding through its interaction with UDP-glucose:glycoprotein glucosyltransferase. Expression of Sep15 is regulated by dietary selenium and the unfolded protein response, but its specific function is not known. In this study, we developed and characterized Sep15 KO mice by targeted removal of exon 2 of the Sep15 gene coding for the cysteinerich UDP-glucose:glycoprotein glucosyltransferase-binding domain. These KO mice synthesized a mutant mRNA, but the shortened protein product could be detected neither in tissues nor in Sep15 KO embryonic fibroblasts. Sep15 KO mice were viable and fertile, showed normal brain morphology, and did not activate endoplasmic reticulum stress pathways. However, parameters of oxidative stress were elevated in the livers of these mice. We found that Sep15 mRNA was enriched during lens development. Further phenotypic characterization of Sep15KO mice revealed a prominent nuclear cataract that developed at an early age. These cataracts did not appear to be associated with severe oxidative stress or glucose dysregulation.Wesuggest that the cataracts resulted from an improper folding status of lens proteins caused by Sep15 deficiency

    High resolution time-course mapping of early transcriptomic, molecular and cellular phenotypes in Huntington\u27s disease CAG knock-in mice across multiple genetic backgrounds.

    Get PDF
    Huntington\u27s disease is a dominantly inherited neurodegenerative disease caused by the expansion of a CAG repeat in the HTT gene. In addition to the length of the CAG expansion, factors such as genetic background have been shown to contribute to the age at onset of neurological symptoms. A central challenge in understanding the disease progression that leads from the HD mutation to massive cell death in the striatum is the ability to characterize the subtle and early functional consequences of the CAG expansion longitudinally. We used dense time course sampling between 4 and 20 postnatal weeks to characterize early transcriptomic, molecular and cellular phenotypes in the striatum of six distinct knock-in mouse models of the HD mutation. We studied the effects of the HttQ111 allele on the C57BL/6J, CD-1, FVB/NCr1, and 129S2/SvPasCrl genetic backgrounds, and of two additional alleles, HttQ92 and HttQ50, on the C57BL/6J background. We describe the emergence of a transcriptomic signature in HttQ111/+  mice involving hundreds of differentially expressed genes and changes in diverse molecular pathways. We also show that this time course spanned the onset of mutant huntingtin nuclear localization phenotypes and somatic CAG-length instability in the striatum. Genetic background strongly influenced the magnitude and age at onset of these effects. This work provides a foundation for understanding the earliest transcriptional and molecular changes contributing to HD pathogenesis

    High-throughput functional analysis of autism genes in zebrafish identifies convergence in dopaminergic and neuroimmune pathways

    Get PDF
    Advancing from gene discovery in autism spectrum disorders (ASDs) to the identification of biologically relevant mechanisms remains a central challenge. Here, we perform parallel in vivo functional analysis of 10 ASD genes at the behavioral, structural, and circuit levels in zebrafish mutants, revealing both unique and overlapping effects of gene loss of function. Whole-brain mapping identifies the forebrain and cerebellum as the most significant contributors to brain size differences, while regions involved in sensory-motor control, particularly dopaminergic regions, are associated with altered baseline brain activity. Finally, we show a global increase in microglia resulting from ASD gene loss of function in select mutants, implicating neuroimmune dysfunction as a key pathway relevant to ASD biology
    • …
    corecore