560 research outputs found

    Lazarus ecology: Recovering the distribution and migratory patterns of the extinct Carolina parakeet.

    Get PDF
    The study of the ecology and natural history of species has traditionally ceased when a species goes extinct, despite the benefit to current and future generations of potential findings. We used the extinct Carolina parakeet as a case study to develop a framework investigating the distributional limits, subspecific variation, and migratory habits of this species as a means to recover important information about recently extinct species. We united historical accounts with museum collections to develop an exhaustive, comprehensive database of every known occurrence of this once iconic species. With these data, we combined species distribution models and ordinal niche comparisons to confront multiple conjectured hypotheses about the parakeet's ecology with empirical data on where and when this species occurred. Our results demonstrate that the Carolina parakeet's range was likely much smaller than previously believed, that the eastern and western subspecies occupied different climatic niches with broad geographical separation, and that the western subspecies was likely a seasonal migrant while the eastern subspecies was not. This study highlights the novelty and importance of collecting occurrence data from published observations on extinct species, providing a starting point for future investigations of the factors that drove the Carolina parakeet to extinction. Moreover, the recovery of lost autecological knowledge could benefit the conservation of other parrot species currently in decline and would be crucial to the success of potential de-extinction efforts for the Carolina parakeet

    Plague risk in the western United States over seven decades of environmental change

    Get PDF
    After several pandemics over the last two millennia, the wildlife reservoirs of plague (Yersinia pestis) now persist around the world, including in the western United States. Routine surveillance in this region has generated comprehensive records of human cases and animal seroprevalence, creating a unique opportunity to test how plague reservoirs are responding to environmental change. Here, we test whether animal and human data suggest that plague reservoirs and spillover risk have shifted since 1950. To do so, we develop a new method for detecting the impact of climate change on infectious disease distributions, capable of disentangling long-term trends (signal) and interannual variation in both weather and sampling (noise). We find that plague foci are associated with high-elevation rodent communities, and soil biochemistry may play a key role in the geography of long-term persistence. In addition, we find that human cases are concentrated only in a small subset of endemic areas, and that spillover events are driven by higher rodent species richness (the amplification hypothesis) and climatic anomalies (the trophic cascade hypothesis). Using our detection model, we find that due to the changing climate, rodent communities at high elevations have become more conducive to the establishment of plague reservoirs—with suitability increasing up to 40% in some places—and that spillover risk to humans at mid-elevations has increased as well, although more gradually. These results highlight opportunities for deeper investigation of plague ecology, the value of integrative surveillance for infectious disease geography, and the need for further research into ongoing climate change impacts

    漱石と魯迅の比較研究の試み-『坊つちやん』と『阿Q正伝』の接点を中心に

    Get PDF
    <p>The estimated global distribution of Zika (red) and dengue (blue) based on current (a, b) and 2050 climate projections (c, d), compared against the current (light grey) and future distribution (dark grey) of all three mosquito vectors <i>Aedes aegypti</i>, <i>Ae</i>. <i>africanus</i> and <i>Ae</i>. <i>albopictus</i> (a-d).</p

    Trends and Opportunities in Tick-Borne Disease Geography

    Get PDF
    Tick-borne diseases are a growing problem in many parts of the world, and their surveillance and control touch on challenging issues in medical entomology, agricultural health, veterinary medicine, and biosecurity. Spatial approaches can be used to synthesize the data generated by integrative One Health surveillance systems, and help stakeholders, managers, and medical geographers understand the current and future distribution of risk. Here, we performed a systematic review of over 8,000 studies and identified a total of 303 scientific publications that map tick-borne diseases using data on vectors, pathogens, and hosts (including wildlife, livestock, and human cases). We find that the field is growing rapidly, with the major Ixodes-borne diseases (Lyme disease and tick-borne encephalitis in particular) giving way to monitoring efforts that encompass a broader range of threats. We find a tremendous diversity of methods used to map tick-borne disease, but also find major gaps: data on the enzootic cycle of tick-borne pathogens is severely underutilized, and mapping efforts are mostly limited to Europe and North America. We suggest that future work can readily apply available methods to track the distributions of tick-borne diseases in Africa and Asia, following a One Health approach that combines medical and veterinary surveillance for maximum impact

    On the Inadequacy of Species Distribution Models for Modelling the Spread of SARS-CoV-2: Response to Araújo and Naimi

    Get PDF
    The ongoing pandemic of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing significant damage to public health and economic livelihoods, and is putting significant strains on healthcare services globally. This unfolding emergency has prompted the preparation and dissemination of the article “Spread of SARS-CoV-2 Coronavirus likely to be constrained by climate” by Araújo and Naimi (2020). The authors present the results of an ensemble forecast made from a suite of species distribution models (SDMs), where they attempt to predict the suitability of the climate for the spread of SARS-CoV-2 over the coming months. They argue that climate is likely to be a primary regulator for the spread of the infection and that people in warm-temperate and cold climates are more vulnerable than those in tropical and arid climates. A central finding of their study is that the possibility of a synchronous global pandemic of SARS-CoV-2 is unlikely. Whilst we understand that the motivations behind producing such work are grounded in trying to be helpful, we demonstrate here that there are clear conceptual and methodological deficiencies with their study that render their results and conclusions invalid. What follows is a response to the Araújo and Naimi article centered around three main criticisms: 1) Given the fact that SARS-CoV-2 has a primary infection pathway of direct contact, it is in an active spreading phase, and remains largely underreported in the Global South, it represents an inappropriate system for analysis using the SDM framework. 2) Even if we were to accept that an SDM framework would be applicable here, the methodology presented in the article strays far from best-practice guidelines for the application of SDMs. 3) The dissemination strategy of the authors failed to respect the frameworks of risks adhered to in other academic disciplines pertaining to public health, resulting in erroneous but well-publicised claims with broad policy implications before any scientific oversight could be applied

    Spatial parasitology and the unmapped human helminthiases

    Get PDF
    Helminthiases are a class of neglected tropical diseases that affect at least 1 billion people worldwide, with a disproportionate impact on resource-poor areas with limited disease surveillance. Geospatial methods can offer valuable insights into the burden of these infections, particularly given that many are subject to strong ecological influences on the environmental, vector-borne or zoonotic stages of their life cycle. In this study, we screened 6829 abstracts and analysed 485 studies that use maps to document, infer or predict transmission patterns for over 200 species of parasitic worms. We found that quantitative mapping methods are increasingly used in medical parasitology, drawing on One Health surveillance data from the community scale to model geographic distributions and burdens up to the regional or global scale. However, we found that the vast majority of the human helminthiases may be entirely unmapped, with research effort focused disproportionately on a half-dozen infections that are targeted by mass drug administration programmes. Entire regions were also surprisingly under-represented in the literature, particularly southern Asia and the Neotropics. We conclude by proposing a shortlist of possible priorities for future research, including several neglected helminthiases with a burden that may be underestimated

    Scattering theory on graphs

    Full text link
    We consider the scattering theory for the Schr\"odinger operator -\Dc_x^2+V(x) on graphs made of one-dimensional wires connected to external leads. We derive two expressions for the scattering matrix on arbitrary graphs. One involves matrices that couple arcs (oriented bonds), the other involves matrices that couple vertices. We discuss a simple way to tune the coupling between the graph and the leads. The efficiency of the formalism is demonstrated on a few known examples.Comment: 21 pages, LaTeX, 10 eps figure
    corecore