19 research outputs found

    Acceleration of cell factories engineering using CRISPR-based technologies

    Get PDF

    CRMAGE: CRISPR Optimized MAGE Recombineering

    Get PDF
    A bottleneck in metabolic engineering and systems biology approaches is the lack of efficient genome engineering technologies. Here, we combine CRISPR/Cas9 and λ Red recombineering based MAGE technology (CRMAGE) to create a highly efficient and fast method for genome engineering of Escherichia coli. Using CRMAGE, the recombineering efficiency was between 96.5% and 99.7% for gene recoding of three genomic targets, compared to between 0.68% and 5.4% using traditional recombineering. For modulation of protein synthesis (small insertion/RBS substitution) the efficiency was increased from 6% to 70%. CRMAGE can be multiplexed and enables introduction of at least two mutations in a single round of recombineering with similar efficiencies. PAM-independent loci were targeted using degenerate codons, thereby making it possible to modify any site in the genome. CRMAGE is based on two plasmids that are assembled by a USER-cloning approach enabling quick and cost efficient gRNA replacement. CRMAGE furthermore utilizes CRISPR/Cas9 for efficient plasmid curing, thereby enabling multiple engineering rounds per day. To facilitate the design process, a web-based tool was developed to predict both the λ Red oligos and the gRNAs. The CRMAGE platform enables highly efficient and fast genome editing and may open up promising prospective for automation of genome-scale engineering

    CrEdit: CRISPR mediated multi-loci gene integration in Saccharomyces cerevisiae

    Get PDF
    BACKGROUND: One of the bottlenecks in production of biochemicals and pharmaceuticals in Saccharomyces cerevisiae is stable and homogeneous expression of pathway genes. Integration of genes into the genome of the production organism is often a preferred option when compared to expression from episomal vectors. Existing approaches for achieving stable simultaneous genome integrations of multiple DNA fragments often result in relatively low integration efficiencies and furthermore rely on the use of selection markers. RESULTS: Here, we have developed a novel method, CrEdit (CRISPR/Cas9 mediated genome Editing), which utilizes targeted double strand breaks caused by CRISPR/Cas9 to significantly increase the efficiency of homologous integration in order to edit and manipulate genomic DNA. Using CrEdit, the efficiency and locus specificity of targeted genome integrations reach close to 100% for single gene integration using short homology arms down to 60 base pairs both with and without selection. This enables direct and cost efficient inclusion of homology arms in PCR primers. As a proof of concept, a non-native β-carotene pathway was reconstructed in S. cerevisiae by simultaneous integration of three pathway genes into individual intergenic genomic sites. Using longer homology arms, we demonstrate highly efficient and locus-specific genome integration even without selection with up to 84% correct clones for simultaneous integration of three gene expression cassettes. CONCLUSIONS: The CrEdit approach enables fast and cost effective genome integration for engineering of S. cerevisiae. Since the choice of the targeting sites is flexible, CrEdit is a powerful tool for diverse genome engineering applications. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12934-015-0288-3) contains supplementary material, which is available to authorized users

    Analisi dell'espressione di nr5a2 E xbp1 nel pancreas esocrino di Danio rerio.

    Get PDF
    L’obbiettivo di questa tesi è stato quello di valutare come, nel pancreas esocrino di Danio rerio, l’espressione dei geni xbp1 e nr5a2 venga alterata dopo l’esposizione degli embrioni a differenti sostanze farmacologiche

    Enhanced protein and biochemical production using CRISPRi-based growth switches

    No full text
    Li S, Jendresen CB, GrĂĽnberger A, et al. Enhanced protein and biochemical production using CRISPRi-based growth switches. Metabolic Engineering. 2016;38:274-284.Production of proteins and biochemicals in microbial cell factories is often limited by carbon and energy spent on excess biomass formation. To address this issue, we developed several genetic growth switches based on CRISPR interference technology. We demonstrate that growth of Escherichia coli can be controlled by repressing the DNA replication machinery, by targeting dnaA and oriC, or by blocking nucleotide synthesis through pyrF or thyA. This way, total GFP-protein production could be increased by up to 2.2-fold. Single-cell dynamic tracking in microfluidic systems was used to confirm functionality of the growth switches. Decoupling of growth from production of biochemicals was demonstrated for mevalonate, a precursor for isoprenoid compounds. Mass yield of mevalonate was increased by 41%, and production was maintained for more than 45 h after activation of the pyrF-based growth switch. The developed methods represent a promising approach for increasing production yield and titer for proteins and biochemicals
    corecore