78 research outputs found

    Numerical Modeling of the Global Atmosphere

    Get PDF
    Under this grant, we continued development and evaluation of the updraft downdraft model for cumulus parameterization. The model includes the mass, rainwater and vertical momentum budget equations for both updrafts and downdrafts. The rainwater generated in an updraft falls partly inside and partly outside the updraft. Two types of stationary solutions are identified for the coupled rainwater budget and vertical momentum equations: (1) solutions for small tilting angles, which are unstable; (2) solutions for large tilting angles, which are stable. In practical applications, we select the smallest stable tilting angle as an optimum value. The model has been incorporated into the Arakawa-Schubert (A-S) cumulus parameterization. The results of semi-prognostic and single-column prognostic tests of the revised A-S parameterization show drastic improvement in predicting the humidity field. Cheng and Arakawa presents the rationale and basic design of the updraft-downdraft model, together with these test results. Cheng and Arakawa, on the other hand gives technical details of the model as implemented in current version of the UCLA GCM

    Lagrangian analysis of the northern stratospheric polar vortex split in april 2020

    Get PDF
    The present study examines the northern stratosphere during April 2020, when the polar vortex split into two cyclonic vortices during a winter-early spring period with the strongest ozone depletion on record. We investigate the dynamical evolution leading to the split at middle stratospheric levels, including the fate of fluid parcels on the vortex boundary during its rupture and the distribution of ozone between the vortices resulting from the split. We also illustrate the vertical structure of the vortices after the split. The findings obtained with Lagrangian methods confirm the key role for the split played by a flow with a special configuration of barriers to the motion of parcels. A trajectory analysis clarifies how the ozone distribution between vortices was such that ozone poorest air remained in the main vortex. The offspring vortex had a deep structure from the troposphere and later decayed to vanish by the end of April.Peer ReviewedObjectius de Desenvolupament Sostenible::13 - Acció per al ClimaPostprint (published version
    • …
    corecore