48 research outputs found

    Transport anb Structural Properties of Aqueous Solutions of Organic Solvents.

    Get PDF
    Molecular Dynamics simulation technique has been used in this work to obtain equilibrium as well as transport properties of different aqueoussolutions. The peculiar behavior observed in pure water and its mixtures with other substances at different thermodynamic conditions, and the knowledge and understanding of the properties of these systems are the motivations of this work. We have made a direct connection between the local tetrahedral structure of water, created by the presence of hydrogen bonds, and the selfdiffusion coefficient at liquid-like densities. We have found some indications ofan order transition in the three dimensional structure of water at certain conditions of temperature (above 345 K) and densities (between 0.9 to 1.3 g/cm3).The strong hydrogen bond interaction observed in pure water plays a central role in aqueous solutions. We have studied several properties of aqueous mixtures of associating fluids, such as methanol, ethanol, acetone and dimethyl sulfoxide (DMSO). We observe that the presence of each type of solute perturb the local structure of water in a different manner, and this perturbation gives rise to the formation of chain-like structures with long-range correlation of hydrogen-bonded water molecules that is responsible for thehigh viscosity of the mixture. We have also computed the thermal conductivity of the different mixtures, obtaining very good agreement between our simulation results and the available experimental data.One of the properties that we have analyzed for these binary mixtures is the Ludwing-Soret effect, which is a macroscopic cross effect where a diffusion process is caused by the presence of a temperature gradient in a multicomponent system. This effect can be quantified through the thermal diffusion factor, which is usually positive for most solutions. However, in thecase associating fluids, the value of this coefficient may have a change in its sign at some particular composition. Our simulations reproduce even quantitatively the change in the sign of the Soret coefficient experimentally observed, and to the best of our knowledge, this is the first time that such achievement is reached for a mixture of molecular fluid employing molecular dynamic simulations. Additionally, we have devised a simple lattice model to support the hypothesis that the change in the sign of the Soret coefficient will appear in all cases in which the energy of the crossed interaction betweendifferent species is more negative than the interaction energies between pure components.The final part of this work is devoted to the computation of structural, transport and dielectric properties of benzene in water at supercritical conditions. We have employed a new Anisotropic United Atom (AUA) model of benzene that reproduces the quadrupolar moment of this molecule. We have computed different properties like self-diffusion coefficient and Maxwell-Stefancoefficients, and shear viscosity for the mixture at supercritical conditions. A strong density and composition dependence of the properties is observed.Experimental data shows the presence of aggregates between water and benzene molecules. This fact suggests the presence of some degree ofhydrogen bonding between these two molecules. Our simulations reproduce this behavior and we observed the formation of hydrogen bonds between the two species. In addition, we observe that these bonds are longer lived than the corresponding hydrogen bonds between water molecules. Similarly, we obtain an important reduction of the dielectric constant of the mixture with the increment of the amount of benzene molecules, at least at medium and highdensities.DE LA TESISLa simulación Dinámica Molecular ha sido la técnica empleada en este trabajo para la obtención de propiedades de transporte y de equilibrio de sistemas reales. El comportamiento peculiar observado por el agua a diferentes condiciones termodinámicas y en presencia de otras substancias, el conocimiento y entendimiento de las propiedades de este tipo de sistemas son una de las principales motivaciones de este trabajo. Adicionalmente, se ha realizado un extenso estudio de las relaciones intrínsecas existentes entre la estructura local del sistema, desde un punto de vista microscópico, y laspropiedades dinámicas de transporte, tanto en el caso del agua pura como en el caso de mezclas acuosas de solventes orgánicos.En primer lugar, se ha realizado un análisis de la relación existente entre la estructura local de puentes de hidrógeno presente en el agua pura en condiciones sub y supercríticas, para ello se realizó una comparación entre cuatro diferentes modelos comúnmente utilizados en la literatura. Los resultados obtenidos nos han permitido relacionar de una manera directa la estructura tetraédrica local de las moléculas de agua, creada por la presencia de los puentes de hidrógeno, y el valor que alcanza el coeficiente de autodifusión en condiciones de densidad de líquido.La fuerte interacción debida a los puentes de hidrógeno presente en las moléculas de agua juega un papel central en el comportamiento de soluciones acuosas. En este trabajo se han estudiado mezclas acuosas de fluidos asociantes, como metanol, etanol, acetona y sulfóxido de dimetilo. El análisis de los resultados de simulación muestra que la presencia dediferentes tipos de soluto perturban de una manera diferente la estructura tetraédrica local del agua. Esta pérdida en la estructura tetraédrica del agua origina un incremento en la rigidez de las moléculas de agua, con respecto aotras, más simétricas y menos rígidas, presentes en el agua pura. Como consecuencia, se ha observado un incremento del tiempo de vida de lospuentes de hidrógeno presentes en la mezcla, hecho que justifica el aumento observado en la viscosidad de la mezcla. Por otro lado, se han realizado simulaciones para calcular la conductividad térmica de la mezcla obteniendoresultados que presentan un acuerdo excelente con los datos experimentales.El efecto Ludwig-Soret es otra de las propiedades calculadas para las mezclas estudiadas. Este efecto cruzado macroscópico consiste en unproceso difusivo causado por la presencia de un gradiente de temperatura en sistemas multicomponentes. Este efecto es cuantificado por medio del factor de difusión térmica, el cual suele ser siempre positivo en la mayor parte delas soluciones. Sin embargo, para el caso de fluidos asociantes, el valor de este coeficiente puede cambiar de signo a una concentración particular. Se ha calculado el coeficiente de Soret para soluciones acuosas de loscompuestos orgánicos antes mencionados. Nuestras simulaciones reproducen el cambio de signo observado en estos sistemas obteniendo unacuerdo cuantitativo excelente con los datos experimentales. Adicionalmente, se ha podido observar que el cambio de signo en de coeficiente aparece siempre que la energía de interacción cruzada, entre las moléculas de diferentes especies, es mas negativa que las energías de interacción entre los componentes puros.Finalmente, se han estudiado las propiedades estructurales, dieléctricas y de transporte de mezclas acuosas de benceno en condiciones supercríticas. En nuestras simulaciones se ha utilizado un nuevo modelo anisotrópico deátomo unificado. Entre las propiedades de la mezcla calculadas se encuentran los coeficientes de auto difusión, difusión de Maxwell-Stefan ycoeficiente de viscosidad en condiciones supercríticas. Adicionalmente, datos experimentales recientes han mostrado la presencia de ciertos grupos de moléculas de benceno y agua formando grupos de agregados. Nuestras simulaciones reproducen la formación de puentes de hidrógeno entre las dos especies con tiempos de vida media superiores a los encontrados entre las moléculas de agua

    Thermodynamically consistent force field for coarse-grained modeling of aqueous electrolyte solution

    Get PDF
    International audienceWe propose a thermodynamically consistent methodology to parameterizeinteractions between charged particles inside the dissipative particle dynamics (DPD) formalism.We have used experimental data of osmotic pressure as a function of the salinity in order tooptimize the required interaction parameters. Our results for NaCl aqueous solution show that theuse of mean osmotic coefficient, as well as the activity coefficient of individual ions, allow tounambiguously determine the Na+-water, cr-water and Na+-cr DPD repulsion parameters. Wepropose a simple linear relationship between the hydration free energies· of ions and the ionwaterrepulsion parameters that allows the parameterization of the complete series of halide andalkaline ions. Two different strategies have been used to derive the anion-cation interactionparameters for halide and alkaline but NaCl. In the first one, parameters are obtained for ail pairsof ions based on the numericàl optimization of the anion-cation repulsion parameter with respectto experimental osmotic pressure data. The mean absolute relative deviation between simuJatedand experimental data is then smaller than 4%. Second, we propose a simple, purely predictiveapproach to obtain the anion-cation interaction parameters based on the free energy difference ofhydration energies of anions and cations in the spirit of the law of matching water affinities(LMW A). This approach predict sait properties with a mean absolute relative deviation of theorder of 13 %, and with an accuracy better than 6% if small ions (Lt and F) are removed

    Diffusion under confinement: hydrodynamic finite-size effects in simulation

    Full text link
    We investigate finite-size effects on diffusion in confined fluids using molecular dynamics simulations and hydrodynamic calculations. Specifically, we consider a Lennard-Jones fluid in slit pores without slip at the interface and show that the use of periodic boundary conditions in the directions along the surfaces results in dramatic finite-size effects, in addition to that of the physically relevant confining length. As in the simulation of bulk fluids, these effects arise from spurious hydrodynamic interactions between periodic images and from the constraint of total momentum conservation. We derive analytical expressions for the correction to the diffusion coefficient in the limits of both elongated and flat systems, which are in excellent agreement with the molecular simulation results except for the narrowest pores, where the discreteness of the fluid particles starts to play a role. The present work implies that the diffusion coefficients for wide nanopores computed using elongated boxes suffer from finite-size artifacts which had not been previously appreciated. In addition, our analytical expression provides the correction to be applied to the simulation results for finite (possibly small) systems. It applies not only to molecular but also to all mesoscopic hydrodynamic simulations, including Lattice-Boltzmann, Multi-Particle Collision Dynamics or Dissipative Particle Dynamics, which are often used to investigate confined soft matter involving colloidal particles and polymers.Comment: 3 figures and 1 in the supplemental sectio

    Histogram Reweighting Method for Dynamic Properties

    Full text link
    The histogram reweighting technique, widely used to analyze Monte Carlo data, is shown to be applicable to dynamic properties obtained from Molecular Dynamics simulations. The theory presented here is based on the fact that the correlation functions in systems in thermodynamic equilibrium are averages over initial conditions of functions of the trajectory of the system in phase-space, the latter depending on the volume, the total number of particles and the classical Hamiltonian. Thus, the well-known histogram reweighting method can almost straightforwardly be applied to reconstruct the probability distribution of initial states at different thermodynamic conditions, without extra computational effort. Correlation functions and transport coefficients are obtained with this method from few simulation data sets.Comment: 4 pages, 3 figure

    Transport properties of dimethyl sulfoxide aqueous solutions

    No full text
    The nonideal behavior of the transport properties of water-dimethyl sulfoxide ͑DMSO͒ mixtures has been studied through equilibrium and nonequilibrium molecular dynamic simulations. The shear viscosity and thermal conductivity of the mixture has been analyzed and compared with available experimental data at ambient conditions. The enhancement of shear viscosity at molar fractions x W ϭ0.65 of water has been quantitatively reproduced in our simulations. In agreement with this fact, we have found an increase in the rigidity of the system reflected by an increase in the decay time of the survival probability of the H bonds. In addition, we compute the tetrahedral order parameter of water molecules in the solution at different molar fractions. This parameter indicates a reduction in the local tetrahedral order of water when the solute concentration is increased, followed by a clear minimum at the equimolar concentration near the locus of the maximum density of the mixture, probably due to the formation of water-DMSO complexes. We have obtained the thermal conductivity of the mixture for the first time. This property also presents a peculiar minimum at x W ϭ0.4, precisely in the region of the minimum of the order parameter. However, no experimental confirmation of our results is available

    Equilibrium and Transport Properties of Primary, Secondary and Tertiary Amines by Molecular Simulation

    No full text
    Using molecular simulation techniques such as Monte Carlo (MC) and molecular dynamics (MD), we present several simulation results of thermodynamic and transport properties for primary, secondary and tertiary amines. These calculations are based on a recently proposed force field for amines that follows the Anisotropic United Atom approach (AUA). Different amine molecules have been studied, including n-ButylAmine, di-n-ButylAmine, tri-n-ButylAmine and 1,4-ButaneDiAmine for primary, secondary, tertiary and multi-functional amines respectively. For the transport properties, we have calculated the viscosity coefficients as a function of temperature using the isothermal-isobaric (NPT) ensemble. In the case of the pure components, we have investigated different thermodynamic properties using NVT Gibbs ensemble simulations such as liquid-vapor phase equilibrium diagrams, vaporization enthalpies, vapor pressures, normal boiling points, critical temperatures and critical densities. We have also calculated the excess enthalpies for water-n-ButylAmine and n-heptane-n-ButylAmine mixtures using Monte Carlo simulations in the NPT ensemble. In addition, we present the calculation of liquid-vapor surface tensions of n-ButylAmine using a two-phase NVT simulation as well as the radial distribution functions. Finally, we have investigated the physical Henry constants of nitrous oxide (N2O) and nitrogen (N2) in an aqueous solutions of n-ButylAmine. In general, we found a good agreement between the available experimental information and our simulation results for all the studied properties, ratifying the predictive capability of the AUA force field for amines

    Cooperative Effects Dominating the Thermodynamics and Kinetics of Surfactant Adsorption in Porous Media: From Lateral Interactions to Surface Aggregation

    No full text
    International audienceSurfactant adsorption in porous media remains poorly understood, as the microscopic collective behavior of these amphiphilic molecules leads to nonconventional phenomena with complex underlying kinetics/structural organization. Here, we develop a simple thermodynamic model, which captures this rich behavior by including cooperative effects to account for lateral interactions between adsorbed molecules and the formation of ordered or disordered self-assemblies. In more detail, this model relies on a kinetic approach, involving adsorption/desorption rates that depend on the surfactant surface concentration to account for facilitated or hindered adsorption at different adsorption stages. Using different surfactants/porous solids, adsorption on both strongly and weakly adsorbing surfaces is found to be accurately described with parameters that are readily estimated from available adsorption experiments. The validity of our physical approach is confirmed by showing that the inferred adsorption/desorption rates obey the quasi-chemical approximation for lateral adsorbate interactions. Such cooperative effects are shown to lead to adsorption kinetics that drastically depart from conventional frameworks (e.g., Henry, Langmuir, and Sips models)
    corecore