60 research outputs found

    A comprehensive analysis of the correlations between resting-state oscillations in multiple-frequency bands and big five traits

    Get PDF
    Recently, the association between human personality traits and resting-state brain activity has gained interest in neuroimaging studies. However, it remains unclear if Big Five personality traits are represented in frequency bands (~0.25 Hz) of resting-state functional magnetic resonance imaging (fMRI) activity. Based on earlier neurophysiological studies, we investigated the correlation between the five personality traits assessed by the NEO Five-Factor Inventory (NEO-FFI), and the fractional amplitude of low-frequency fluctuation (fALFF) at four distinct frequency bands (slow-5 (0.01–0.027 Hz), slow-4 (0.027–0.073 Hz), slow-3 (0.073–0.198 Hz) and slow-2 (0.198–0.25 Hz)). We enrolled 835 young subjects and calculated the correlations of resting-state fMRI signals using a multiple regression analysis. We found a significant and consistent correlation between fALFF and the personality trait of extraversion at all frequency bands. Furthermore, significant correlations were detected in distinct brain regions for each frequency band. This finding supports the frequency-specific spatial representations of personality traits as previously suggested. In conclusion, our data highlight an association between human personality traits and fALFF at four distinct frequency bands

    Regional homogeneity, resting-state functional connectivity and amplitude of low frequency fluctuation associated with creativity measured by divergent thinking in a sex-specific manner

    Get PDF
    Brain connectivity is traditionally thought to be important for creativity. Here we investigated the associations of creativity measured by divergent thinking (CMDT) with resting-state functional magnetic imaging (fMRI) measures and their sex differences. We examined these relationships in the brains of 1277 healthy young adults. Whole-brain analyses revealed a significant interaction between verbal CMDT and sex on (a) regional homogeneity within an area from the left anterior temporal lobe (b) on the resting state functional connectivity (RSFC) between the mPFC and the left inferior frontal gyrus and (c) on fractional amplitude of low frequency fluctuations (fALFF) in several distinct areas, including the precuneus and middle cingulate gyrus, left middle temporal gyrus, right middle frontal gyrus, and cerebellum. These interactions were mediated by positive correlations in females and negative correlations in males. These findings suggest that greater CMDT in females is reflected by (a) regional coherence (regional homogeneity) of brain areas responsible for representing and combining concepts as well as (b) the efficient functional connection (RSFC) between the key areas for the default state of cognitive activity and speech production, and (c) greater spontaneous neural activity (fALFF) during the resting of brain areas involved in frontal lobe functions, default cognitive activities, and language functions. Furthermore, these findings suggest that the associations between creativity and resting state brain connectivity patterns are different between males and females

    The Effects of Family Socioeconomic Status on Psychological and Neural Mechanisms as Well as Their Sex Differences

    Get PDF
    Family socioeconomic status (SES) is an important factor that affects an individual’s neural and cognitive development. The two novel aims of this study were to reveal (a) the effects of family SES on mean diffusivity (MD) using diffusion tensor imaging given the characteristic property of MD to reflect neural plasticity and development and (b) the sex differences in SES effects. In a study cohort of 1,216 normal young adults, we failed to find significant main effects of family SES on MD; however, previously observed main effects of family SES on regional gray matter volume and fractional anisotropy (FA) were partly replicated. We found a significant effect of the interaction between sex and family income on MD in the thalamus as well as significant effects of the interaction between sex and parents’ educational qualification (year’s of education) on MD and FA in the body of the corpus callosum as well as white matter areas between the anterior cingulate cortex and lateral prefrontal cortex. These results suggest the sex-specific associations of family SES with neural and/or cognitive mechanisms particularly in neural tissues in brain areas that play key roles in basic information processing and higher-order cognitive processes in a way females with greater family SES level show imaging outcome measures that have been associated with more neural tissues (such as greater FA and lower MD) and males showed opposite

    The relationship between processing speed and regional white matter volume in healthy young people

    Get PDF
    Processing speed is considered a key cognitive resource and it has a crucial role in all types of cognitive performance. Some researchers have hypothesised the importance of white matter integrity in the brain for processing speed; however, the relationship at the whole-brain level between white matter volume (WMV) and processing speed relevant to the modality or problem used in the task has never been clearly evaluated in healthy people. In this study, we used various tests of processing speed and Voxel-Based Morphometry (VBM) analyses, it is involves a voxel-wise comparison of the local volume of gray and white, to assess the relationship between processing speed and regional WMV (rWMV). We examined the association between processing speed and WMV in 887 healthy young adults (504 men and 383 women; mean age, 20.7 years, SD, 1.85). We performed three different multiple regression analyses: we evaluated rWMV associated with individual differences in the simple processing speed task, word–colour and colour–word tasks (processing speed tasks with words) and the simple arithmetic task, after adjusting for age and sex. The results showed a positive relationship at the whole-brain level between rWMV and processing speed performance. In contrast, the processing speed performance did not correlate with rWMV in any of the regions examined. Our results support the idea that WMV is associated globally with processing speed performance regardless of the type of processing speed task

    General intelligence is associated with working memory-related brain activity: new evidence from a large sample study

    Get PDF
    Psychometric intelligence is closely related to working memory capacity. Here we aim to determine the associations of neural activation patterns during the N-back working memory paradigm with psychometric intelligence and working memory performance. We solved the statistical problems of previous studies using (1) a large cohort of 1235 young adults and (2) robust voxel-by-voxel permutation-based statistics at the whole-brain level. Many of the significant correlations were we ak, and our findings were not consistent with those of previous studies. We observed that many of the significant correlations involved brain areas in the periphery or boundaries between the task-positive network (TPN) and task-negative network (TNN), suggesting that the expansion of the TPN or TNN is associated with greater cognitive ability. Lower activity in TPN and less task-induced deactivation (TID) in TNN were associated with greater cognitive ability. These findings indicate that subjects with greater cognitive ability have a lower brain response to task demand, consistent with the notion that TID in TNN reflects cognitive demand but partly inconsistent with the prevailing neural efficiency theory. One exception was the pre-supplementary motor area, which plays a key role in cognitive control and sequential processing. In this area, intelligent subjects demonstrated greater activity related to working memory, suggesting that the pre-supplementary motor area plays a unique role in the execution of working memory tasks in intelligent subjects

    The Neural Basis of Event Simulation: An fMRI Study

    No full text
    <div><p>Event simulation (ES) is the situational inference process in which perceived event features such as objects, agents, and actions are associated in the brain to represent the whole situation. ES provides a common basis for various cognitive processes, such as perceptual prediction, situational understanding/prediction, and social cognition (such as mentalizing/trait inference). Here, functional magnetic resonance imaging was used to elucidate the neural substrates underlying important subdivisions within ES. First, the study investigated whether ES depends on different neural substrates when it is conducted explicitly and implicitly. Second, the existence of neural substrates specific to the future-prediction component of ES was assessed. Subjects were shown contextually related object pictures implying a situation and performed several picture–word-matching tasks. By varying task goals, subjects were made to infer the implied situation implicitly/explicitly or predict the future consequence of that situation. The results indicate that, whereas implicit ES activated the lateral prefrontal cortex and medial/lateral parietal cortex, explicit ES activated the medial prefrontal cortex, posterior cingulate cortex, and medial/lateral temporal cortex. Additionally, the left temporoparietal junction plays an important role in the future-prediction component of ES. These findings enrich our understanding of the neural substrates of the implicit/explicit/predictive aspects of ES-related cognitive processes.</p></div

    Schematic depiction of a trial for each task and condition.

    No full text
    <p>In the Object task (cue “Same?”), the subject answered whether one of the three objects presented was congruent with the subsequently presented target word (i.e., object name). Three objects presented in the Con condition were contextually unrelated, and those in the Imp condition were contextually related and indicated a situation. In the Situation task (cue “Situation?”), the subject answered whether the target word was properly depicting the situation indicated by the object pictures. In the Future-prediction task (cue “After this?”), the subject answered whether the target word was properly depicting possible future events of the indicated situation.</p

    Activation areas specific to the implicit and explicit event simulation (ES) processes.

    No full text
    <p>All voxels except for the regions described below are significant at a statistical threshold of <i>p</i><0.001, corrected to <i>p</i><0.05 for multiple comparisons using the cluster size, assuming the whole brain as the search volume. The result of the left parahippocampal cortex in the explicit ES process is thresholded at <i>p</i><0.001 (uncorrected). Error bars indicate standard deviations (SDs). IPL: inferior parietal lobule. PCC: posterior cingulate cortex. RSC: retrosplenial cortex. R: right. L: left. The coordinates in the Montreal Neurological Institute (MNI) standard space are indicated.</p

    Clusters of activation.

    No full text
    <p>Clusters with significant activation associated with implicit, explicit, or future prediction.</p><p>Significance level: p<0.001 with cluster correction for multiple comparisons (p<0.05).</p><p>(* p<0.001 uncorrected, **p<0.001 with cluster correction for multiple comparisons [p<0.06, k = 133]).</p>§<p>: activation peaks met the exclusion criteria described in the <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0096534#s2" target="_blank">Methods</a> & <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0096534#s3" target="_blank">Results</a> sections.</p><p>Size: Numbers of voxels. t value: maximum t value at the peak voxels.</p><p>x,y,z: MNI coordinates of peak voxel; TPJ: temporo-parietal junction.</p><p>dMPFC: dorsal medial prefrontal cortex; vMPFC: ventral medial prefrontal cortex.</p><p>ACC: anterior cingulate cortex.</p

    Activation areas specific to future prediction.

    No full text
    <p>The result is thresholded at <i>p</i><0.001, corrected to <i>p</i><0.06 (<i>k</i> = 133) for multiple comparisons. Error bars indicate SD. TPJ: temporoparietal junction. R: right. L: left. The coordinates in the MNI standard space are indicated.</p
    • …
    corecore